统计数据的统计分析/统计数据的分析

J. Hilbe
{"title":"统计数据的统计分析/统计数据的分析","authors":"J. Hilbe","doi":"10.1080/11356405.2017.1368162","DOIUrl":null,"url":null,"abstract":"Abstract This monograph provides an overview of the various regression models used to analyse count response models. We begin by defining counts and the methods used to model count data. We then discuss the basic count model — Poisson regression — focusing on the nature of equi-dispersion, which occurs when the mean and variance are identical in value. Equi-dispersion is a distributional assumption of the Poisson model. We examine how to determine when this assumption is violated, which results in extra-dispersion; i.e., either under- or overdispersion. Extra-dispersion biases the Poisson model standard errors, leading us to accept or reject a model when we should not. The negative binomial model is generally used to model generic overdispersion, but if we know the cause of the overdispersion we can select an alternative count model that appropriately adjusts for it. The same is the case with under-dispersion. Aside from looking at the Poisson and negative binomial models, we also evaluate models such as generalized Poisson, Poisson inverse Gaussian, two-part hurdle models, zero-inflated mixture models and other varieties of count model. Finally, we provide a brief look at Bayesian count models, showing how to estimate a Bayesian negative binomial model.","PeriodicalId":153832,"journal":{"name":"Cultura y Educación","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"The statistical analysis of count data / El análisis estadístico de los datos de recuento\",\"authors\":\"J. Hilbe\",\"doi\":\"10.1080/11356405.2017.1368162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This monograph provides an overview of the various regression models used to analyse count response models. We begin by defining counts and the methods used to model count data. We then discuss the basic count model — Poisson regression — focusing on the nature of equi-dispersion, which occurs when the mean and variance are identical in value. Equi-dispersion is a distributional assumption of the Poisson model. We examine how to determine when this assumption is violated, which results in extra-dispersion; i.e., either under- or overdispersion. Extra-dispersion biases the Poisson model standard errors, leading us to accept or reject a model when we should not. The negative binomial model is generally used to model generic overdispersion, but if we know the cause of the overdispersion we can select an alternative count model that appropriately adjusts for it. The same is the case with under-dispersion. Aside from looking at the Poisson and negative binomial models, we also evaluate models such as generalized Poisson, Poisson inverse Gaussian, two-part hurdle models, zero-inflated mixture models and other varieties of count model. Finally, we provide a brief look at Bayesian count models, showing how to estimate a Bayesian negative binomial model.\",\"PeriodicalId\":153832,\"journal\":{\"name\":\"Cultura y Educación\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cultura y Educación\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/11356405.2017.1368162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cultura y Educación","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11356405.2017.1368162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

摘要:本专著概述了用于分析计数响应模型的各种回归模型。我们首先定义计数和用于对计数数据建模的方法。然后,我们讨论了基本计数模型-泊松回归-集中于等分散的性质,当平均值和方差的值相同时发生。等色散是泊松模型的一个分布假设。我们研究了如何确定何时违反了这一假设,从而导致额外的分散;即,分散不足或分散过度。额外色散偏差会影响泊松模型的标准误差,导致我们在不应该接受或拒绝一个模型的时候接受或拒绝它。负二项模型通常用于模拟一般的过度分散,但如果我们知道过度分散的原因,我们可以选择一个替代的计数模型来适当地调整它。欠分散的情况也是如此。除了研究泊松模型和负二项模型外,我们还评估了广义泊松模型、泊松逆高斯模型、两部分障碍模型、零膨胀混合模型和其他种类的计数模型。最后,我们简要介绍贝叶斯计数模型,展示如何估计贝叶斯负二项模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The statistical analysis of count data / El análisis estadístico de los datos de recuento
Abstract This monograph provides an overview of the various regression models used to analyse count response models. We begin by defining counts and the methods used to model count data. We then discuss the basic count model — Poisson regression — focusing on the nature of equi-dispersion, which occurs when the mean and variance are identical in value. Equi-dispersion is a distributional assumption of the Poisson model. We examine how to determine when this assumption is violated, which results in extra-dispersion; i.e., either under- or overdispersion. Extra-dispersion biases the Poisson model standard errors, leading us to accept or reject a model when we should not. The negative binomial model is generally used to model generic overdispersion, but if we know the cause of the overdispersion we can select an alternative count model that appropriately adjusts for it. The same is the case with under-dispersion. Aside from looking at the Poisson and negative binomial models, we also evaluate models such as generalized Poisson, Poisson inverse Gaussian, two-part hurdle models, zero-inflated mixture models and other varieties of count model. Finally, we provide a brief look at Bayesian count models, showing how to estimate a Bayesian negative binomial model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信