异步查询提交的程序转换

Mahendra Chavan, Ravindra Guravannavar, Karthik Ramachandra, Sundararajarao Sudarshan
{"title":"异步查询提交的程序转换","authors":"Mahendra Chavan, Ravindra Guravannavar, Karthik Ramachandra, Sundararajarao Sudarshan","doi":"10.1109/ICDE.2011.5767870","DOIUrl":null,"url":null,"abstract":"Synchronous execution of queries or Web service requests forces the calling application to block until the query/request is satisfied. The performance of applications can be significantly improved by asynchronous submission of queries, which allows the application to perform other processing instead of blocking while the query is executed, and to concurrently issue multiple queries. Concurrent submission of multiple queries can allow the query execution engine to better utilize multiple processors and disks, and to reorder disk IO requests to minimize seeks. Concurrent submission also reduces the impact of network round-trip latency and delays at the database, when processing multiple queries. However, manually writing applications to exploit asynchronous query submission is tedious. In this paper we address the issue of automatically transforming a program written assuming synchronous query submission, to one that exploits asynchronous query submission. Our program transformation method is based on dataflow analysis and is framed as a set of transformation rules. Our rules can handle query executions within loops, unlike some of the earlier work in this area. We have built a tool that implements our transformation techniques on Java code that uses JDBC calls; our tool can be extended to handle Web service calls. We have carried out a detailed experimental study on several real-life applications rewritten using our transformation techniques. The experimental study shows the effectiveness of the proposed rewrite techniques, both in terms of their applicability and performance gains achieved.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Program transformations for asynchronous query submission\",\"authors\":\"Mahendra Chavan, Ravindra Guravannavar, Karthik Ramachandra, Sundararajarao Sudarshan\",\"doi\":\"10.1109/ICDE.2011.5767870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronous execution of queries or Web service requests forces the calling application to block until the query/request is satisfied. The performance of applications can be significantly improved by asynchronous submission of queries, which allows the application to perform other processing instead of blocking while the query is executed, and to concurrently issue multiple queries. Concurrent submission of multiple queries can allow the query execution engine to better utilize multiple processors and disks, and to reorder disk IO requests to minimize seeks. Concurrent submission also reduces the impact of network round-trip latency and delays at the database, when processing multiple queries. However, manually writing applications to exploit asynchronous query submission is tedious. In this paper we address the issue of automatically transforming a program written assuming synchronous query submission, to one that exploits asynchronous query submission. Our program transformation method is based on dataflow analysis and is framed as a set of transformation rules. Our rules can handle query executions within loops, unlike some of the earlier work in this area. We have built a tool that implements our transformation techniques on Java code that uses JDBC calls; our tool can be extended to handle Web service calls. We have carried out a detailed experimental study on several real-life applications rewritten using our transformation techniques. The experimental study shows the effectiveness of the proposed rewrite techniques, both in terms of their applicability and performance gains achieved.\",\"PeriodicalId\":332374,\"journal\":{\"name\":\"2011 IEEE 27th International Conference on Data Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 27th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2011.5767870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

查询或Web服务请求的同步执行迫使调用应用程序阻塞,直到查询/请求得到满足。通过异步提交查询可以显著提高应用程序的性能,这允许应用程序在执行查询时执行其他处理,而不是阻塞,并并发地发出多个查询。并发提交多个查询可以允许查询执行引擎更好地利用多个处理器和磁盘,并重新排序磁盘IO请求以最小化寻道。在处理多个查询时,并发提交还减少了网络往返延迟和数据库延迟的影响。然而,手动编写应用程序来利用异步查询提交是乏味的。在本文中,我们将讨论如何将假设同步查询提交的程序自动转换为利用异步查询提交的程序。我们的程序转换方法基于数据流分析,并以一组转换规则为框架。我们的规则可以处理循环内的查询执行,这与该领域的一些早期工作不同。我们已经构建了一个工具,在使用JDBC调用的Java代码上实现我们的转换技术;我们的工具可以扩展为处理Web服务调用。我们对使用我们的转换技术重写的几个实际应用程序进行了详细的实验研究。实验研究表明,所提出的重写技术在适用性和性能方面都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Program transformations for asynchronous query submission
Synchronous execution of queries or Web service requests forces the calling application to block until the query/request is satisfied. The performance of applications can be significantly improved by asynchronous submission of queries, which allows the application to perform other processing instead of blocking while the query is executed, and to concurrently issue multiple queries. Concurrent submission of multiple queries can allow the query execution engine to better utilize multiple processors and disks, and to reorder disk IO requests to minimize seeks. Concurrent submission also reduces the impact of network round-trip latency and delays at the database, when processing multiple queries. However, manually writing applications to exploit asynchronous query submission is tedious. In this paper we address the issue of automatically transforming a program written assuming synchronous query submission, to one that exploits asynchronous query submission. Our program transformation method is based on dataflow analysis and is framed as a set of transformation rules. Our rules can handle query executions within loops, unlike some of the earlier work in this area. We have built a tool that implements our transformation techniques on Java code that uses JDBC calls; our tool can be extended to handle Web service calls. We have carried out a detailed experimental study on several real-life applications rewritten using our transformation techniques. The experimental study shows the effectiveness of the proposed rewrite techniques, both in terms of their applicability and performance gains achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信