改进的基于sfm的室内定位与遮挡去除

Yushi Li, G. Baciu, Yu Han, Chenhui Li
{"title":"改进的基于sfm的室内定位与遮挡去除","authors":"Yushi Li, G. Baciu, Yu Han, Chenhui Li","doi":"10.4018/IJSSCI.2018070102","DOIUrl":null,"url":null,"abstract":"This article describes a novel 3D image-based indoor localization system integrated with an improved SfM (structure from motion) approach and an obstacle removal component. In contrast with existing state-of-the-art localization techniques focusing on static outdoor or indoor environments, the adverse effects, generated by moving obstacles in busy indoor spaces, are considered in this work. In particular, the problem of occlusion removal is converted into a separation problem of moving foreground and static background. A low-rank and sparse matrix decomposition approach is used to solve this problem efficiently. Moreover, a SfM with RT (re-triangulation) is adopted in order to handle the drifting problem of incremental SfM method in indoor scene reconstruction. To evaluate the performance of the system, three data sets and the corresponding query sets are established to simulate different states of the indoor environment. Quantitative experimental results demonstrate that both query registration rate and localization accuracy increase significantly after integrating the authors' improvements.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved SfM-Based Indoor Localization with Occlusion Removal\",\"authors\":\"Yushi Li, G. Baciu, Yu Han, Chenhui Li\",\"doi\":\"10.4018/IJSSCI.2018070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a novel 3D image-based indoor localization system integrated with an improved SfM (structure from motion) approach and an obstacle removal component. In contrast with existing state-of-the-art localization techniques focusing on static outdoor or indoor environments, the adverse effects, generated by moving obstacles in busy indoor spaces, are considered in this work. In particular, the problem of occlusion removal is converted into a separation problem of moving foreground and static background. A low-rank and sparse matrix decomposition approach is used to solve this problem efficiently. Moreover, a SfM with RT (re-triangulation) is adopted in order to handle the drifting problem of incremental SfM method in indoor scene reconstruction. To evaluate the performance of the system, three data sets and the corresponding query sets are established to simulate different states of the indoor environment. Quantitative experimental results demonstrate that both query registration rate and localization accuracy increase significantly after integrating the authors' improvements.\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSSCI.2018070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2018070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的基于三维图像的室内定位系统,该系统集成了改进的SfM(运动结构)方法和障碍物去除组件。与现有的专注于静态室外或室内环境的最先进定位技术相比,本工作考虑了繁忙室内空间中移动障碍物产生的不利影响。特别是,将遮挡去除问题转化为动态前景和静态背景的分离问题。采用低秩稀疏矩阵分解方法有效地解决了这一问题。此外,为了解决增量SfM方法在室内场景重建中的漂移问题,采用了一种带RT (re-triangulation)的SfM方法。为了评估系统的性能,建立了三个数据集和相应的查询集来模拟室内环境的不同状态。定量实验结果表明,综合作者的改进后,查询配准率和定位精度都有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved SfM-Based Indoor Localization with Occlusion Removal
This article describes a novel 3D image-based indoor localization system integrated with an improved SfM (structure from motion) approach and an obstacle removal component. In contrast with existing state-of-the-art localization techniques focusing on static outdoor or indoor environments, the adverse effects, generated by moving obstacles in busy indoor spaces, are considered in this work. In particular, the problem of occlusion removal is converted into a separation problem of moving foreground and static background. A low-rank and sparse matrix decomposition approach is used to solve this problem efficiently. Moreover, a SfM with RT (re-triangulation) is adopted in order to handle the drifting problem of incremental SfM method in indoor scene reconstruction. To evaluate the performance of the system, three data sets and the corresponding query sets are established to simulate different states of the indoor environment. Quantitative experimental results demonstrate that both query registration rate and localization accuracy increase significantly after integrating the authors' improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信