5G IAB网络中的智能电网关键流量路由与链路调度

Mohand Ouamer Nait Belaid, V. Audebert, B. Deneuville, R. Langar
{"title":"5G IAB网络中的智能电网关键流量路由与链路调度","authors":"Mohand Ouamer Nait Belaid, V. Audebert, B. Deneuville, R. Langar","doi":"10.1109/SmartGridComm52983.2022.9961009","DOIUrl":null,"url":null,"abstract":"The increased integration of distributed energy resources (DERs) results in a two-way dynamic operation of the power distribution grid. Consequently, conventional Protection, Automation, and Control (PAC) systems are not able to manage DER related constraints in the distribution grid. New Fault location, Isolation, and service Recovery (FLISR) schemes based on communication capabilities are gaining a lot of momentum. Together with the 5th generation of mobile networks (5G), they improve the reactivity and the coordination of the grid defense lines. In this context, we present in this paper a FLISR traffic management framework in 5G Integrated Access and Backhaul (IAB) networks. Our framework consists first in optimizing the placement of FLISR protection functions within the Radio Access Network (RAN). Then, a joint routing and link scheduling of FLISR traffic in the 5G-RAN is proposed by taking into account the energy consumption. To achieve this, we formulate the master problem as two correlated integer linear programs (ILP) and present an optimal solution to solve it. Our objective is to find the best trade-off between the achieved network throughput and energy consumption, while ensuring the latency constraint of FLISR traffic. Our approach is compliant with the Software-Defined Radio Access Network (SD-RAN) paradigm since it can be integrated as a control flow application on top of a SD-RAN controller. Through a case study, we show that our proposed approach achieves significant gains in terms of energy consumption, flow acceptance and achieved network throughput, compared to baseline routing and placement strategies.","PeriodicalId":252202,"journal":{"name":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smart Grid Critical Traffic Routing and Link Scheduling in 5G IAB Networks\",\"authors\":\"Mohand Ouamer Nait Belaid, V. Audebert, B. Deneuville, R. Langar\",\"doi\":\"10.1109/SmartGridComm52983.2022.9961009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increased integration of distributed energy resources (DERs) results in a two-way dynamic operation of the power distribution grid. Consequently, conventional Protection, Automation, and Control (PAC) systems are not able to manage DER related constraints in the distribution grid. New Fault location, Isolation, and service Recovery (FLISR) schemes based on communication capabilities are gaining a lot of momentum. Together with the 5th generation of mobile networks (5G), they improve the reactivity and the coordination of the grid defense lines. In this context, we present in this paper a FLISR traffic management framework in 5G Integrated Access and Backhaul (IAB) networks. Our framework consists first in optimizing the placement of FLISR protection functions within the Radio Access Network (RAN). Then, a joint routing and link scheduling of FLISR traffic in the 5G-RAN is proposed by taking into account the energy consumption. To achieve this, we formulate the master problem as two correlated integer linear programs (ILP) and present an optimal solution to solve it. Our objective is to find the best trade-off between the achieved network throughput and energy consumption, while ensuring the latency constraint of FLISR traffic. Our approach is compliant with the Software-Defined Radio Access Network (SD-RAN) paradigm since it can be integrated as a control flow application on top of a SD-RAN controller. Through a case study, we show that our proposed approach achieves significant gains in terms of energy consumption, flow acceptance and achieved network throughput, compared to baseline routing and placement strategies.\",\"PeriodicalId\":252202,\"journal\":{\"name\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm52983.2022.9961009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm52983.2022.9961009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分布式能源集成度的提高导致配电网的双向动态运行。因此,传统的保护、自动化和控制(PAC)系统无法管理配电网中与DER相关的约束。基于通信能力的故障定位、隔离和业务恢复(FLISR)新方案获得了很大的发展势头。与第五代移动网络(5G)一起,它们提高了电网防线的反应性和协调性。在此背景下,我们在本文中提出了5G综合接入和回程(IAB)网络中的FLISR流量管理框架。我们的框架首先包括优化FLISR保护功能在无线接入网(RAN)中的位置。在此基础上,提出了一种考虑能耗的5G-RAN中FLISR流量的联合路由和链路调度方案。为了实现这一点,我们将主问题表述为两个相关的整数线性规划(ILP),并给出了一个最优解。我们的目标是在确保FLISR流量的延迟约束的同时,找到实现的网络吞吐量和能耗之间的最佳权衡。我们的方法符合软件定义无线接入网络(SD-RAN)范例,因为它可以集成为SD-RAN控制器之上的控制流应用程序。通过一个案例研究,我们表明,与基线路由和放置策略相比,我们提出的方法在能耗、流量接受度和实现的网络吞吐量方面取得了显著的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Grid Critical Traffic Routing and Link Scheduling in 5G IAB Networks
The increased integration of distributed energy resources (DERs) results in a two-way dynamic operation of the power distribution grid. Consequently, conventional Protection, Automation, and Control (PAC) systems are not able to manage DER related constraints in the distribution grid. New Fault location, Isolation, and service Recovery (FLISR) schemes based on communication capabilities are gaining a lot of momentum. Together with the 5th generation of mobile networks (5G), they improve the reactivity and the coordination of the grid defense lines. In this context, we present in this paper a FLISR traffic management framework in 5G Integrated Access and Backhaul (IAB) networks. Our framework consists first in optimizing the placement of FLISR protection functions within the Radio Access Network (RAN). Then, a joint routing and link scheduling of FLISR traffic in the 5G-RAN is proposed by taking into account the energy consumption. To achieve this, we formulate the master problem as two correlated integer linear programs (ILP) and present an optimal solution to solve it. Our objective is to find the best trade-off between the achieved network throughput and energy consumption, while ensuring the latency constraint of FLISR traffic. Our approach is compliant with the Software-Defined Radio Access Network (SD-RAN) paradigm since it can be integrated as a control flow application on top of a SD-RAN controller. Through a case study, we show that our proposed approach achieves significant gains in terms of energy consumption, flow acceptance and achieved network throughput, compared to baseline routing and placement strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信