销售数据预测的数据挖掘算法和统计分析

Lin Wu, Jinyao Yan, Y. Fan
{"title":"销售数据预测的数据挖掘算法和统计分析","authors":"Lin Wu, Jinyao Yan, Y. Fan","doi":"10.1109/CSO.2012.132","DOIUrl":null,"url":null,"abstract":"This paper develops and compares different models to forecast new product sales data with increasing sales trend and multiple predictor inputs. In order to analyze new product with increasing sales trend, we developed and evaluated multiple time series forecasting methods, including Exponential Smoothing model, Holt's Linear model, ARMA model, and ARMA wit linear trend models. Furthermore, we created multiple Causal Factor Forecasting models to incorporate various dependent input factors such as sale person's quotes, product pricing, product seasonality factors, to further reduce forecasting error. We analyzed original data regression model, trend and residual regression model, and ARMAV wit linear trend model to consider input factors. We discovered that ARMAV wit linear trend model gives best forecasting accuracy and lowest RSS (Residual Sum of Square). In conclusion, ARMAV with linear trend method is the best benchmark model to forecast sales data for new product with trend and with sales person's inputs.","PeriodicalId":170543,"journal":{"name":"2012 Fifth International Joint Conference on Computational Sciences and Optimization","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Data Mining Algorithms and Statistical Analysis for Sales Data Forecast\",\"authors\":\"Lin Wu, Jinyao Yan, Y. Fan\",\"doi\":\"10.1109/CSO.2012.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops and compares different models to forecast new product sales data with increasing sales trend and multiple predictor inputs. In order to analyze new product with increasing sales trend, we developed and evaluated multiple time series forecasting methods, including Exponential Smoothing model, Holt's Linear model, ARMA model, and ARMA wit linear trend models. Furthermore, we created multiple Causal Factor Forecasting models to incorporate various dependent input factors such as sale person's quotes, product pricing, product seasonality factors, to further reduce forecasting error. We analyzed original data regression model, trend and residual regression model, and ARMAV wit linear trend model to consider input factors. We discovered that ARMAV wit linear trend model gives best forecasting accuracy and lowest RSS (Residual Sum of Square). In conclusion, ARMAV with linear trend method is the best benchmark model to forecast sales data for new product with trend and with sales person's inputs.\",\"PeriodicalId\":170543,\"journal\":{\"name\":\"2012 Fifth International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2012.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2012.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文开发并比较了不同的模型来预测新产品的销售数据,以增加销售趋势和多个预测器输入。为了分析具有增长趋势的新产品,我们开发并评估了多种时间序列预测方法,包括指数平滑模型、霍尔特线性模型、ARMA模型和ARMA线性趋势模型。此外,我们还建立了多个因果因素预测模型,将销售人员报价、产品定价、产品季节性因素等各种依赖的输入因素纳入其中,进一步降低预测误差。我们分析了原始数据回归模型、趋势和残差回归模型以及考虑输入因素的线性趋势模型的ARMAV。结果表明,线性趋势模型的ARMAV预测精度最高,残差平方和最小。综上所述,基于线性趋势法的ARMAV是预测具有趋势和销售人员投入的新产品销售数据的最佳基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Mining Algorithms and Statistical Analysis for Sales Data Forecast
This paper develops and compares different models to forecast new product sales data with increasing sales trend and multiple predictor inputs. In order to analyze new product with increasing sales trend, we developed and evaluated multiple time series forecasting methods, including Exponential Smoothing model, Holt's Linear model, ARMA model, and ARMA wit linear trend models. Furthermore, we created multiple Causal Factor Forecasting models to incorporate various dependent input factors such as sale person's quotes, product pricing, product seasonality factors, to further reduce forecasting error. We analyzed original data regression model, trend and residual regression model, and ARMAV wit linear trend model to consider input factors. We discovered that ARMAV wit linear trend model gives best forecasting accuracy and lowest RSS (Residual Sum of Square). In conclusion, ARMAV with linear trend method is the best benchmark model to forecast sales data for new product with trend and with sales person's inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信