重构基因调控网络的计算方法

Xutao Deng, H. Ali
{"title":"重构基因调控网络的计算方法","authors":"Xutao Deng, H. Ali","doi":"10.1109/CSB.2003.1227350","DOIUrl":null,"url":null,"abstract":"With the rapid accumulation of gene expression data in publicly accessible databases, computational study of gene regulation has become an obtainable goal Intrinsic to this task will be data mining tools for inferring knowledge from biological data. In this project, we have developed a new data mining technique in which we adapt the connectivity of a recurrent neural network model by indexing regulatory elements and including nonlinear interaction terms. The new technique reduces the number of parameters by O(n), therefore increasing the chance of recovering the underlying regulatory network. In order to fit the model from data, we have developed a genetic fitting algorithm with O(n) time complexity and that adapts the connectivity during the fitting process until a satisfactory fit is obtained. We have implemented this fitting algorithm and applied it to two data sets: rat central nervous system development (CNS) data with 112 genes, and yeast whole genome data with 2467 genes. With multiple runs of the fitting algorithm, we were able to efficiently generate a statistical pattern of the model parameters from the data. Because of its adaptive features, this method will be especially useful for reconstructing coarse-grained gene regulatory network from large scale or genome scale gene expression data sets.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A computational approach to reconstructing gene regulatory networks\",\"authors\":\"Xutao Deng, H. Ali\",\"doi\":\"10.1109/CSB.2003.1227350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid accumulation of gene expression data in publicly accessible databases, computational study of gene regulation has become an obtainable goal Intrinsic to this task will be data mining tools for inferring knowledge from biological data. In this project, we have developed a new data mining technique in which we adapt the connectivity of a recurrent neural network model by indexing regulatory elements and including nonlinear interaction terms. The new technique reduces the number of parameters by O(n), therefore increasing the chance of recovering the underlying regulatory network. In order to fit the model from data, we have developed a genetic fitting algorithm with O(n) time complexity and that adapts the connectivity during the fitting process until a satisfactory fit is obtained. We have implemented this fitting algorithm and applied it to two data sets: rat central nervous system development (CNS) data with 112 genes, and yeast whole genome data with 2467 genes. With multiple runs of the fitting algorithm, we were able to efficiently generate a statistical pattern of the model parameters from the data. Because of its adaptive features, this method will be especially useful for reconstructing coarse-grained gene regulatory network from large scale or genome scale gene expression data sets.\",\"PeriodicalId\":147883,\"journal\":{\"name\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2003.1227350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

随着基因表达数据在可公开访问的数据库中的快速积累,基因调控的计算研究已经成为一个可实现的目标,这项任务的内在将是从生物数据中推断知识的数据挖掘工具。在这个项目中,我们开发了一种新的数据挖掘技术,我们通过索引调节元素和包括非线性相互作用项来适应递归神经网络模型的连通性。新技术将参数数量减少了O(n),因此增加了恢复潜在调节网络的机会。为了从数据中拟合模型,我们开发了一种时间复杂度为0 (n)的遗传拟合算法,该算法在拟合过程中自适应连通性,直到获得满意的拟合。我们实现了该拟合算法,并将其应用于两个数据集:包含112个基因的大鼠中枢神经系统发育(CNS)数据和包含2467个基因的酵母全基因组数据。通过多次运行拟合算法,我们能够有效地从数据中生成模型参数的统计模式。由于其自适应特性,该方法将特别适用于从大规模或基因组尺度的基因表达数据集重建粗粒度的基因调控网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computational approach to reconstructing gene regulatory networks
With the rapid accumulation of gene expression data in publicly accessible databases, computational study of gene regulation has become an obtainable goal Intrinsic to this task will be data mining tools for inferring knowledge from biological data. In this project, we have developed a new data mining technique in which we adapt the connectivity of a recurrent neural network model by indexing regulatory elements and including nonlinear interaction terms. The new technique reduces the number of parameters by O(n), therefore increasing the chance of recovering the underlying regulatory network. In order to fit the model from data, we have developed a genetic fitting algorithm with O(n) time complexity and that adapts the connectivity during the fitting process until a satisfactory fit is obtained. We have implemented this fitting algorithm and applied it to two data sets: rat central nervous system development (CNS) data with 112 genes, and yeast whole genome data with 2467 genes. With multiple runs of the fitting algorithm, we were able to efficiently generate a statistical pattern of the model parameters from the data. Because of its adaptive features, this method will be especially useful for reconstructing coarse-grained gene regulatory network from large scale or genome scale gene expression data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信