节能间接蒸发空气冷却

X. Cui, Xiaohu Yang, Yanjun Sun, X. Meng, Liwen Jin
{"title":"节能间接蒸发空气冷却","authors":"X. Cui, Xiaohu Yang, Yanjun Sun, X. Meng, Liwen Jin","doi":"10.5772/INTECHOPEN.79223","DOIUrl":null,"url":null,"abstract":"An energy-saving and environmentally friendly air-conditioning method has been pro- posed. The key component is a novel indirect evaporative heat exchanger (IEHX) based on the M-cycle. In this design, the compact IEHX is able to produce sub-wet-bulb cooling and reduce the air temperature approaching dew-point temperature. This chapter aims to achieve a fundamental understanding of the novel IEHX. A numerical model has been developed and validated by comparing the simulated outlet air conditions against experimental data. The model showed a good agreement with the experimental findings. Employing the validated numerical model, we have theoretically investigated the heat and mass transfer behavior occurred in the IEHX. The detailed cooling process has been analyzed on the psychrometric chart. In addition, the effects of varying inlet conditions and airflow passage dimensions on the cooling efficiency have been studied. By analyzing the thermal performance of the IEHX, we have provided possible suggestions to improve the performance of the dew-point cooler and enable it to attain higher cooling effectiveness.","PeriodicalId":386786,"journal":{"name":"Advanced Cooling Technologies and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy Efficient Indirect Evaporative Air Cooling\",\"authors\":\"X. Cui, Xiaohu Yang, Yanjun Sun, X. Meng, Liwen Jin\",\"doi\":\"10.5772/INTECHOPEN.79223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An energy-saving and environmentally friendly air-conditioning method has been pro- posed. The key component is a novel indirect evaporative heat exchanger (IEHX) based on the M-cycle. In this design, the compact IEHX is able to produce sub-wet-bulb cooling and reduce the air temperature approaching dew-point temperature. This chapter aims to achieve a fundamental understanding of the novel IEHX. A numerical model has been developed and validated by comparing the simulated outlet air conditions against experimental data. The model showed a good agreement with the experimental findings. Employing the validated numerical model, we have theoretically investigated the heat and mass transfer behavior occurred in the IEHX. The detailed cooling process has been analyzed on the psychrometric chart. In addition, the effects of varying inlet conditions and airflow passage dimensions on the cooling efficiency have been studied. By analyzing the thermal performance of the IEHX, we have provided possible suggestions to improve the performance of the dew-point cooler and enable it to attain higher cooling effectiveness.\",\"PeriodicalId\":386786,\"journal\":{\"name\":\"Advanced Cooling Technologies and Applications\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Cooling Technologies and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.79223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Cooling Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种节能环保的空调方式。关键部件是基于m循环的新型间接蒸发换热器(IEHX)。在本设计中,紧凑的IEHX能够产生亚湿球冷却,并将空气温度降低到接近露点温度。本章的目的是实现对新型IEHX的基本理解。建立了一个数值模型,并将模拟的出口空气条件与实验数据进行了比较。模型与实验结果吻合较好。利用验证的数值模型,从理论上研究了IEHX内部的传热传质行为。在干湿图上详细分析了冷却过程。此外,还研究了不同进口条件和气流通道尺寸对冷却效率的影响。通过对IEHX的热性能分析,提出了改进露点冷却器性能的建议,使其达到更高的冷却效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Efficient Indirect Evaporative Air Cooling
An energy-saving and environmentally friendly air-conditioning method has been pro- posed. The key component is a novel indirect evaporative heat exchanger (IEHX) based on the M-cycle. In this design, the compact IEHX is able to produce sub-wet-bulb cooling and reduce the air temperature approaching dew-point temperature. This chapter aims to achieve a fundamental understanding of the novel IEHX. A numerical model has been developed and validated by comparing the simulated outlet air conditions against experimental data. The model showed a good agreement with the experimental findings. Employing the validated numerical model, we have theoretically investigated the heat and mass transfer behavior occurred in the IEHX. The detailed cooling process has been analyzed on the psychrometric chart. In addition, the effects of varying inlet conditions and airflow passage dimensions on the cooling efficiency have been studied. By analyzing the thermal performance of the IEHX, we have provided possible suggestions to improve the performance of the dew-point cooler and enable it to attain higher cooling effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信