四面体网格的简化

Issac J. Trotts, B. Hamann, K. Joy, D. Wiley
{"title":"四面体网格的简化","authors":"Issac J. Trotts, B. Hamann, K. Joy, D. Wiley","doi":"10.1109/VISUAL.1998.745315","DOIUrl":null,"url":null,"abstract":"We present a method for the construction of multiple levels of tetrahedral meshes approximating a trivariate function at different levels of detail. Starting with an initial, high-resolution triangulation of a three-dimensional region, we construct coarser representation levels by collapsing tetrahedra. Each triangulation defines a linear spline function, where the function values associated with the vertices are the spline coefficients. Based on predicted errors, we collapse tetrahedron in the grid that do not cause the maximum error to exceed a use-specified threshold. Bounds are stored for individual tetrahedra and are updated as the mesh is simplified. We continue the simplification process until a certain error is reached. The result is a hierarchical data description suited for the efficient visualization of large data sets at varying levels of detail.","PeriodicalId":399113,"journal":{"name":"Proceedings Visualization '98 (Cat. No.98CB36276)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Simplification of tetrahedral meshes\",\"authors\":\"Issac J. Trotts, B. Hamann, K. Joy, D. Wiley\",\"doi\":\"10.1109/VISUAL.1998.745315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for the construction of multiple levels of tetrahedral meshes approximating a trivariate function at different levels of detail. Starting with an initial, high-resolution triangulation of a three-dimensional region, we construct coarser representation levels by collapsing tetrahedra. Each triangulation defines a linear spline function, where the function values associated with the vertices are the spline coefficients. Based on predicted errors, we collapse tetrahedron in the grid that do not cause the maximum error to exceed a use-specified threshold. Bounds are stored for individual tetrahedra and are updated as the mesh is simplified. We continue the simplification process until a certain error is reached. The result is a hierarchical data description suited for the efficient visualization of large data sets at varying levels of detail.\",\"PeriodicalId\":399113,\"journal\":{\"name\":\"Proceedings Visualization '98 (Cat. No.98CB36276)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Visualization '98 (Cat. No.98CB36276)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.1998.745315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Visualization '98 (Cat. No.98CB36276)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.1998.745315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

我们提出了一种在不同细节水平上近似三元函数的多层四面体网格的构造方法。从三维区域的初始高分辨率三角剖分开始,我们通过折叠四面体构建更粗糙的表示级别。每个三角剖分定义一个线性样条函数,其中与顶点相关联的函数值是样条系数。基于预测误差,我们在网格中折叠不会导致最大误差超过使用指定阈值的四面体。边界为单个四面体存储,并随着网格的简化而更新。我们继续简化过程,直到达到一定的误差。其结果是一种分层数据描述,适合于在不同细节级别上有效地可视化大型数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplification of tetrahedral meshes
We present a method for the construction of multiple levels of tetrahedral meshes approximating a trivariate function at different levels of detail. Starting with an initial, high-resolution triangulation of a three-dimensional region, we construct coarser representation levels by collapsing tetrahedra. Each triangulation defines a linear spline function, where the function values associated with the vertices are the spline coefficients. Based on predicted errors, we collapse tetrahedron in the grid that do not cause the maximum error to exceed a use-specified threshold. Bounds are stored for individual tetrahedra and are updated as the mesh is simplified. We continue the simplification process until a certain error is reached. The result is a hierarchical data description suited for the efficient visualization of large data sets at varying levels of detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信