具有偏差参数的非线性微分方程组边值问题的离散延拓

M. N. Afanaseva, E. Kuznetsov
{"title":"具有偏差参数的非线性微分方程组边值问题的离散延拓","authors":"M. N. Afanaseva, E. Kuznetsov","doi":"10.15507/2079-6900.21.201903.309-316","DOIUrl":null,"url":null,"abstract":"The solution of the boundary value problems for system of nonlinear differential equations with argument delay is considered in the article. The solution is based on the shooting method. Within its framework the method of continuation with respect to parameter in the Lahaye form, method of the best parametrization and the Newton method are implemented that allow to find possible solutions. To solve the Cauchy problem at each step of the shooting method the discrete continuation method with respect to the best parameter combined with the Newton method is applied. This approach allows to build the solution in the case when singular limit points exist. That provides continuation of Newton iteration process. The algorithm is completed by calculating the Lagrange polynomial to obtain the values of function in the delay points. The example given in the article represents the advantages of the proposed method.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The discrete continuation in the boundary value problem for systems of nonlinear differential equations with deviation argument\",\"authors\":\"M. N. Afanaseva, E. Kuznetsov\",\"doi\":\"10.15507/2079-6900.21.201903.309-316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of the boundary value problems for system of nonlinear differential equations with argument delay is considered in the article. The solution is based on the shooting method. Within its framework the method of continuation with respect to parameter in the Lahaye form, method of the best parametrization and the Newton method are implemented that allow to find possible solutions. To solve the Cauchy problem at each step of the shooting method the discrete continuation method with respect to the best parameter combined with the Newton method is applied. This approach allows to build the solution in the case when singular limit points exist. That provides continuation of Newton iteration process. The algorithm is completed by calculating the Lagrange polynomial to obtain the values of function in the delay points. The example given in the article represents the advantages of the proposed method.\",\"PeriodicalId\":273445,\"journal\":{\"name\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15507/2079-6900.21.201903.309-316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.21.201903.309-316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究一类具有参数时滞的非线性微分方程组边值问题的解。解决方案是基于拍摄方法。在其框架内,实现了Lahaye形式的参数延拓法、最佳参数化法和牛顿法,可以找到可能的解。为了解决射击法每一步的柯西问题,采用了关于最优参数的离散延拓法和牛顿法相结合的方法。这种方法允许在存在奇异极限点的情况下构建解。这提供了牛顿迭代过程的延续。该算法通过计算拉格朗日多项式来获得延迟点上的函数值。文中给出的实例说明了所提方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The discrete continuation in the boundary value problem for systems of nonlinear differential equations with deviation argument
The solution of the boundary value problems for system of nonlinear differential equations with argument delay is considered in the article. The solution is based on the shooting method. Within its framework the method of continuation with respect to parameter in the Lahaye form, method of the best parametrization and the Newton method are implemented that allow to find possible solutions. To solve the Cauchy problem at each step of the shooting method the discrete continuation method with respect to the best parameter combined with the Newton method is applied. This approach allows to build the solution in the case when singular limit points exist. That provides continuation of Newton iteration process. The algorithm is completed by calculating the Lagrange polynomial to obtain the values of function in the delay points. The example given in the article represents the advantages of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信