剩余注意网络:一种新的视觉问答基线模型

Salma Louanas, Hichem Debbi
{"title":"剩余注意网络:一种新的视觉问答基线模型","authors":"Salma Louanas, Hichem Debbi","doi":"10.1109/ISIA55826.2022.9993583","DOIUrl":null,"url":null,"abstract":"Answering questions over images is a challenging task, it requires reasoning over both images and text. In this paper, we introduce Residual Attention Network(RAN), a new visual question answering model, and compare it with baseline models such as stacked attention model and CNN-LSTM model. We find that our model performs better than these baseline models. In addition to our model, we also evaluate several holistic models and compare them with neural module networks frameworks, and the results show that neural modules networks perform better in questions reasoning. All the experiments have been done on the CLEVER dataset, which is a recent VQA dataset for evaluating multiple-step reasoning VQA models.","PeriodicalId":169898,"journal":{"name":"2022 5th International Symposium on Informatics and its Applications (ISIA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual Attention Network: A new baseline model for visual question answering\",\"authors\":\"Salma Louanas, Hichem Debbi\",\"doi\":\"10.1109/ISIA55826.2022.9993583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Answering questions over images is a challenging task, it requires reasoning over both images and text. In this paper, we introduce Residual Attention Network(RAN), a new visual question answering model, and compare it with baseline models such as stacked attention model and CNN-LSTM model. We find that our model performs better than these baseline models. In addition to our model, we also evaluate several holistic models and compare them with neural module networks frameworks, and the results show that neural modules networks perform better in questions reasoning. All the experiments have been done on the CLEVER dataset, which is a recent VQA dataset for evaluating multiple-step reasoning VQA models.\",\"PeriodicalId\":169898,\"journal\":{\"name\":\"2022 5th International Symposium on Informatics and its Applications (ISIA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Symposium on Informatics and its Applications (ISIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIA55826.2022.9993583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Symposium on Informatics and its Applications (ISIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIA55826.2022.9993583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回答关于图像的问题是一项具有挑战性的任务,它需要对图像和文本进行推理。本文介绍了一种新的视觉问答模型——残余注意网络(RAN),并将其与堆叠注意模型、CNN-LSTM模型等基线模型进行了比较。我们发现我们的模型比这些基线模型表现得更好。除了我们的模型,我们还评估了几个整体模型,并将它们与神经模块网络框架进行了比较,结果表明神经模块网络在问题推理方面表现更好。所有的实验都是在CLEVER数据集上完成的,这是一个最近的用于评估多步推理VQA模型的VQA数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residual Attention Network: A new baseline model for visual question answering
Answering questions over images is a challenging task, it requires reasoning over both images and text. In this paper, we introduce Residual Attention Network(RAN), a new visual question answering model, and compare it with baseline models such as stacked attention model and CNN-LSTM model. We find that our model performs better than these baseline models. In addition to our model, we also evaluate several holistic models and compare them with neural module networks frameworks, and the results show that neural modules networks perform better in questions reasoning. All the experiments have been done on the CLEVER dataset, which is a recent VQA dataset for evaluating multiple-step reasoning VQA models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信