基于感知器的无线网状网络恶意路由洪水检测分类器

L. Santhanam, Anindo Mukherjee, Raj Bhatnagar, D. Agrawal
{"title":"基于感知器的无线网状网络恶意路由洪水检测分类器","authors":"L. Santhanam, Anindo Mukherjee, Raj Bhatnagar, D. Agrawal","doi":"10.1109/ICCGI.2007.6","DOIUrl":null,"url":null,"abstract":"Wireless mesh networks (WMN) are evolving as a new paradigm for broadband Internet, in which a group of static mesh routers employ multihop forwarding to provide wireless Internet connectivity. All routing protocols in WMNs naively assume nodes to be non- malicious. But, the plug-in-and-play architecture of WMNs paves way for malicious users who could exploit some loopholes of the underlying routing protocol. A malicious node can inundate the network by conducting frequent route discovery which severely reduces the network throughput. In this paper, we investigate the detection of route floods by incorporating a machine learning technique. We use a perceptron training model as a tool for intrusion detection. We train the perceptron model by feeding various network statistics and then use it as a classifier. We illustrate using an experimental wireless network (ns-2) that the proposed scheme can accurately detect route misbehaviors with a very low false positive rate.","PeriodicalId":102568,"journal":{"name":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Perceptron Based Classifier for Detecting Malicious Route Floods in Wireless Mesh Networks\",\"authors\":\"L. Santhanam, Anindo Mukherjee, Raj Bhatnagar, D. Agrawal\",\"doi\":\"10.1109/ICCGI.2007.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless mesh networks (WMN) are evolving as a new paradigm for broadband Internet, in which a group of static mesh routers employ multihop forwarding to provide wireless Internet connectivity. All routing protocols in WMNs naively assume nodes to be non- malicious. But, the plug-in-and-play architecture of WMNs paves way for malicious users who could exploit some loopholes of the underlying routing protocol. A malicious node can inundate the network by conducting frequent route discovery which severely reduces the network throughput. In this paper, we investigate the detection of route floods by incorporating a machine learning technique. We use a perceptron training model as a tool for intrusion detection. We train the perceptron model by feeding various network statistics and then use it as a classifier. We illustrate using an experimental wireless network (ns-2) that the proposed scheme can accurately detect route misbehaviors with a very low false positive rate.\",\"PeriodicalId\":102568,\"journal\":{\"name\":\"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCGI.2007.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCGI.2007.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

无线网状网络(WMN)作为宽带互联网的一种新模式正在发展,它是一组静态网状路由器采用多跳转发来提供无线互联网连接。wmn中的所有路由协议都天真地假定节点是非恶意的。但是,wmn的即插即用结构为恶意用户利用底层路由协议的漏洞铺平了道路。恶意节点通过频繁的路由发现淹没网络,严重降低网络吞吐量。在本文中,我们通过结合机器学习技术来研究路由洪水的检测。我们使用感知器训练模型作为入侵检测的工具。我们通过输入各种网络统计数据来训练感知器模型,然后将其用作分类器。我们使用一个实验无线网络(ns-2)说明,该方案可以准确地检测路由错误行为,并且假阳性率非常低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Perceptron Based Classifier for Detecting Malicious Route Floods in Wireless Mesh Networks
Wireless mesh networks (WMN) are evolving as a new paradigm for broadband Internet, in which a group of static mesh routers employ multihop forwarding to provide wireless Internet connectivity. All routing protocols in WMNs naively assume nodes to be non- malicious. But, the plug-in-and-play architecture of WMNs paves way for malicious users who could exploit some loopholes of the underlying routing protocol. A malicious node can inundate the network by conducting frequent route discovery which severely reduces the network throughput. In this paper, we investigate the detection of route floods by incorporating a machine learning technique. We use a perceptron training model as a tool for intrusion detection. We train the perceptron model by feeding various network statistics and then use it as a classifier. We illustrate using an experimental wireless network (ns-2) that the proposed scheme can accurately detect route misbehaviors with a very low false positive rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信