基于相邻帧时间协同表示的视频摘要

Mingyang Ma, Shaohui Mei, Junhui Hou, Shuai Wan, Zhiyong Wang
{"title":"基于相邻帧时间协同表示的视频摘要","authors":"Mingyang Ma, Shaohui Mei, Junhui Hou, Shuai Wan, Zhiyong Wang","doi":"10.1109/ISPACS.2017.8266466","DOIUrl":null,"url":null,"abstract":"The ever increasing volume of video content demands to develop efficient and effective video summarization (VS) techniques to manage the video data. Recent developments on sparse representation have demonstrated prospective results for VS. In this paper, in consideration of visual similarity of adjacent frames, we formulate the video summarization problem with a temporal collaborative representation (TCR) model, in which the adjacent frames instead of an individual frame are taken into consideration to avoid selecting transitional frames. In addition, a greedy iterative algorithm is designed for model optimization. Experimental results on a benchmark dataset with various types of videos demonstrate that the proposed algorithms can not only outperform the state of the art, but also reduce the probability of selecting transitional frames.","PeriodicalId":166414,"journal":{"name":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Video summarization via temporal collaborative representation of adjacent frames\",\"authors\":\"Mingyang Ma, Shaohui Mei, Junhui Hou, Shuai Wan, Zhiyong Wang\",\"doi\":\"10.1109/ISPACS.2017.8266466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever increasing volume of video content demands to develop efficient and effective video summarization (VS) techniques to manage the video data. Recent developments on sparse representation have demonstrated prospective results for VS. In this paper, in consideration of visual similarity of adjacent frames, we formulate the video summarization problem with a temporal collaborative representation (TCR) model, in which the adjacent frames instead of an individual frame are taken into consideration to avoid selecting transitional frames. In addition, a greedy iterative algorithm is designed for model optimization. Experimental results on a benchmark dataset with various types of videos demonstrate that the proposed algorithms can not only outperform the state of the art, but also reduce the probability of selecting transitional frames.\",\"PeriodicalId\":166414,\"journal\":{\"name\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2017.8266466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2017.8266466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

视频内容的不断增长要求开发高效的视频摘要技术来管理视频数据。在本文中,考虑到相邻帧的视觉相似性,我们使用时间协同表示(TCR)模型来制定视频摘要问题,该模型考虑相邻帧而不是单个帧,以避免选择过渡帧。此外,还设计了一种贪婪迭代算法进行模型优化。在不同类型视频的基准数据集上的实验结果表明,所提出的算法不仅优于目前的技术水平,而且还降低了选择过渡帧的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video summarization via temporal collaborative representation of adjacent frames
The ever increasing volume of video content demands to develop efficient and effective video summarization (VS) techniques to manage the video data. Recent developments on sparse representation have demonstrated prospective results for VS. In this paper, in consideration of visual similarity of adjacent frames, we formulate the video summarization problem with a temporal collaborative representation (TCR) model, in which the adjacent frames instead of an individual frame are taken into consideration to avoid selecting transitional frames. In addition, a greedy iterative algorithm is designed for model optimization. Experimental results on a benchmark dataset with various types of videos demonstrate that the proposed algorithms can not only outperform the state of the art, but also reduce the probability of selecting transitional frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信