星载成像雷达数据的并行处理

C. Miller, D. G. Payne, T. Phung, H. Siegel, Roy D. Williams
{"title":"星载成像雷达数据的并行处理","authors":"C. Miller, D. G. Payne, T. Phung, H. Siegel, Roy D. Williams","doi":"10.1145/224170.224281","DOIUrl":null,"url":null,"abstract":"We discuss the results of a collaborative project on parallel processing of Synthetic Aperture Radar (SAR) data, carried out between the NASA/Jet Propulsion Laboratory (JPL), the California Institute of Technology (Caltech) and Intel Scalable Systems Division (SSD). Through this collaborative effort, we have successfully parallelized the most compute-intensive SAR correlator phase of the Spaceborne Shuttle Imaging Radar-C/X-Band SAR (SIR-C/X-SAR) code, for the Intel Paragon. We describe the data decomposition, the scalable high-performance I/O model, and the node-level optimizations which enable us to obtain efficient processing throughput. In particular, we point out an interesting double level of parallelization arising in the data decomposition which increases substantially our ability to support ''high volume'' SAR. Results are presented from this code running in parallel on the Intel Paragon. A representative set of SAR data, of size 800 Megabytes, which was collected by the SIR-C/X-SAR instrument aboard NASA's Space Shuttle in 15 seconds, is processed in 55 seconds on the Concurrent Supercomputing Consortium's Paragon XP/S 35+. This compares well with a time of 12 minutes for the current SIR-C/X-SAR processing system at JPL. For the first time, a commercial system can process SIR-C/X-SAR data at a rate which is approaching the rate at which the SIR-C/X-SAR instrument can collect the data. This work has successfully demonstrated the viability of the Intel Paragon supercomputer for processing ''high volume\" Synthetic Aperture Radar data in near real-time.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Parallel Processing of Spaceborne Imaging Radar Data\",\"authors\":\"C. Miller, D. G. Payne, T. Phung, H. Siegel, Roy D. Williams\",\"doi\":\"10.1145/224170.224281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the results of a collaborative project on parallel processing of Synthetic Aperture Radar (SAR) data, carried out between the NASA/Jet Propulsion Laboratory (JPL), the California Institute of Technology (Caltech) and Intel Scalable Systems Division (SSD). Through this collaborative effort, we have successfully parallelized the most compute-intensive SAR correlator phase of the Spaceborne Shuttle Imaging Radar-C/X-Band SAR (SIR-C/X-SAR) code, for the Intel Paragon. We describe the data decomposition, the scalable high-performance I/O model, and the node-level optimizations which enable us to obtain efficient processing throughput. In particular, we point out an interesting double level of parallelization arising in the data decomposition which increases substantially our ability to support ''high volume'' SAR. Results are presented from this code running in parallel on the Intel Paragon. A representative set of SAR data, of size 800 Megabytes, which was collected by the SIR-C/X-SAR instrument aboard NASA's Space Shuttle in 15 seconds, is processed in 55 seconds on the Concurrent Supercomputing Consortium's Paragon XP/S 35+. This compares well with a time of 12 minutes for the current SIR-C/X-SAR processing system at JPL. For the first time, a commercial system can process SIR-C/X-SAR data at a rate which is approaching the rate at which the SIR-C/X-SAR instrument can collect the data. This work has successfully demonstrated the viability of the Intel Paragon supercomputer for processing ''high volume\\\" Synthetic Aperture Radar data in near real-time.\",\"PeriodicalId\":269909,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/224170.224281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们讨论了NASA/喷气推进实验室(JPL)、加州理工学院(Caltech)和英特尔可扩展系统部门(SSD)之间开展的一个关于合成孔径雷达(SAR)数据并行处理的合作项目的结果。通过这种合作努力,我们已经成功地为英特尔Paragon并行化了星载航天飞机成像雷达c / x波段SAR (SIR-C/X-SAR)代码中计算最密集的SAR相关器相位。我们描述了数据分解、可扩展的高性能I/O模型以及使我们能够获得高效处理吞吐量的节点级优化。特别地,我们指出了数据分解中出现的有趣的双重并行化,这大大提高了我们支持“大容量”SAR的能力。结果来自于在英特尔Paragon上并行运行的代码。由NASA航天飞机上的SIR-C/X-SAR仪器在15秒内收集的一组具有代表性的800兆字节的SAR数据,在并发超级计算联盟的Paragon XP/S 35+上处理只需55秒。这与喷气推进实验室当前的SIR-C/X-SAR处理系统的12分钟时间相比要好得多。商用系统处理SIR-C/X-SAR数据的速度首次接近SIR-C/X-SAR仪器采集数据的速度。这项工作成功地证明了英特尔Paragon超级计算机在近实时处理“大容量”合成孔径雷达数据方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Processing of Spaceborne Imaging Radar Data
We discuss the results of a collaborative project on parallel processing of Synthetic Aperture Radar (SAR) data, carried out between the NASA/Jet Propulsion Laboratory (JPL), the California Institute of Technology (Caltech) and Intel Scalable Systems Division (SSD). Through this collaborative effort, we have successfully parallelized the most compute-intensive SAR correlator phase of the Spaceborne Shuttle Imaging Radar-C/X-Band SAR (SIR-C/X-SAR) code, for the Intel Paragon. We describe the data decomposition, the scalable high-performance I/O model, and the node-level optimizations which enable us to obtain efficient processing throughput. In particular, we point out an interesting double level of parallelization arising in the data decomposition which increases substantially our ability to support ''high volume'' SAR. Results are presented from this code running in parallel on the Intel Paragon. A representative set of SAR data, of size 800 Megabytes, which was collected by the SIR-C/X-SAR instrument aboard NASA's Space Shuttle in 15 seconds, is processed in 55 seconds on the Concurrent Supercomputing Consortium's Paragon XP/S 35+. This compares well with a time of 12 minutes for the current SIR-C/X-SAR processing system at JPL. For the first time, a commercial system can process SIR-C/X-SAR data at a rate which is approaching the rate at which the SIR-C/X-SAR instrument can collect the data. This work has successfully demonstrated the viability of the Intel Paragon supercomputer for processing ''high volume" Synthetic Aperture Radar data in near real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信