基于改进HBF优化算法的物联网云环境下基于容器的边缘计算任务调度

Bhabendu Kumar Mohanta, B. Sahoo, A. K. Turuk, Srichandan Sobhanayak, Kavita Jaiswal, Debasish Jena
{"title":"基于改进HBF优化算法的物联网云环境下基于容器的边缘计算任务调度","authors":"Bhabendu Kumar Mohanta, B. Sahoo, A. K. Turuk, Srichandan Sobhanayak, Kavita Jaiswal, Debasish Jena","doi":"10.1504/ijes.2020.10029448","DOIUrl":null,"url":null,"abstract":"In conventional cloud computing technology, cloud resources are provided centrally by massive data centres. Therefore, edge computing technology has been proposed, where cloud services can be extended to the edge of the network to decrease a network congestion. The management of the resources is a major challenge before the researcher. Therefore, in this paper, a task scheduling algorithm based on hybrid bacteria foraging optimisation (HBFA) has been proposed for allocating and executing an application's tasks. The proposed algorithm aims to minimise the completion time and maximise resource utilisation in the edge network. A rigorous simulation has been done to test performance of the proposed strategy to compare it with state of art algorithms. The proposed strategy shows better performance compared to the existing work.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Container-based task scheduling for edge computing in IoT-cloud environment using improved HBF optimisation algorithm\",\"authors\":\"Bhabendu Kumar Mohanta, B. Sahoo, A. K. Turuk, Srichandan Sobhanayak, Kavita Jaiswal, Debasish Jena\",\"doi\":\"10.1504/ijes.2020.10029448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In conventional cloud computing technology, cloud resources are provided centrally by massive data centres. Therefore, edge computing technology has been proposed, where cloud services can be extended to the edge of the network to decrease a network congestion. The management of the resources is a major challenge before the researcher. Therefore, in this paper, a task scheduling algorithm based on hybrid bacteria foraging optimisation (HBFA) has been proposed for allocating and executing an application's tasks. The proposed algorithm aims to minimise the completion time and maximise resource utilisation in the edge network. A rigorous simulation has been done to test performance of the proposed strategy to compare it with state of art algorithms. The proposed strategy shows better performance compared to the existing work.\",\"PeriodicalId\":412308,\"journal\":{\"name\":\"Int. J. Embed. Syst.\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijes.2020.10029448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2020.10029448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在传统的云计算技术中,云资源由海量数据中心集中提供。因此,人们提出了边缘计算技术,将云服务扩展到网络的边缘,以减少网络拥塞。资源的管理是摆在研究者面前的一个重大挑战。因此,本文提出了一种基于混合细菌觅食优化(HBFA)的任务调度算法,用于分配和执行应用程序的任务。提出的算法旨在最小化边缘网络的完成时间和最大化资源利用率。通过严格的仿真来测试所提出策略的性能,并将其与最先进的算法进行比较。与已有的工作相比,所提出的策略具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Container-based task scheduling for edge computing in IoT-cloud environment using improved HBF optimisation algorithm
In conventional cloud computing technology, cloud resources are provided centrally by massive data centres. Therefore, edge computing technology has been proposed, where cloud services can be extended to the edge of the network to decrease a network congestion. The management of the resources is a major challenge before the researcher. Therefore, in this paper, a task scheduling algorithm based on hybrid bacteria foraging optimisation (HBFA) has been proposed for allocating and executing an application's tasks. The proposed algorithm aims to minimise the completion time and maximise resource utilisation in the edge network. A rigorous simulation has been done to test performance of the proposed strategy to compare it with state of art algorithms. The proposed strategy shows better performance compared to the existing work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信