Banach空间上的理想收敛与理想Dunford积分。

Anita Caushi
{"title":"Banach空间上的理想收敛与理想Dunford积分。","authors":"Anita Caushi","doi":"10.59287/icsis.634","DOIUrl":null,"url":null,"abstract":"In this paper, we propose on type of Dunford integration in the concept of ideal convergenceThis wants to construct a new convergence of functions in Banach space to definite the measurablefunctions. The main result is construction on the type of Dunford as the Ideal integral. Ideal Dunfordintegral is an application of the convergence ideal in integration but weak integration. For this been followedthe usual route by first introducing the ideal Dunford integral and demonstrating for the ideal Dunfordintegral the most important statements related to it in the classical case. In this paper, we prove if thefunction f is Dunford integrable then it is ideal Dunford integrable, but conversely, this is not true. Thisgives the meaning of the extension of Dunford integration in our article. We are motivated by this by oneimportant example published by Schvabik and Guoju, [20].","PeriodicalId":178836,"journal":{"name":"International Conference on Scientific and Innovative Studies","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ideal convergence and Ideal Dunford integration on Banach space.\",\"authors\":\"Anita Caushi\",\"doi\":\"10.59287/icsis.634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose on type of Dunford integration in the concept of ideal convergenceThis wants to construct a new convergence of functions in Banach space to definite the measurablefunctions. The main result is construction on the type of Dunford as the Ideal integral. Ideal Dunfordintegral is an application of the convergence ideal in integration but weak integration. For this been followedthe usual route by first introducing the ideal Dunford integral and demonstrating for the ideal Dunfordintegral the most important statements related to it in the classical case. In this paper, we prove if thefunction f is Dunford integrable then it is ideal Dunford integrable, but conversely, this is not true. Thisgives the meaning of the extension of Dunford integration in our article. We are motivated by this by oneimportant example published by Schvabik and Guoju, [20].\",\"PeriodicalId\":178836,\"journal\":{\"name\":\"International Conference on Scientific and Innovative Studies\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Scientific and Innovative Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59287/icsis.634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Scientific and Innovative Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59287/icsis.634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在理想收敛的概念下提出了一类Dunford积分,目的是构造一个新的函数在Banach空间上的收敛,以确定可测函数。主要结果是建立了Dunford作为理想积分的类型。理想邓福德积分是收敛理想在积分中的应用,但它是弱积分。我们按照通常的方法,首先引入理想邓福德积分,然后为理想邓福德积分证明经典情况下与之相关的最重要的表述。在本文中,我们证明了如果函数f是邓福德可积的,那么它就是理想邓福德可积的,但相反,这是不成立的。这就给出了本文中邓福德积分扩展的意义。我们受到Schvabik和Guoju发表的一个重要例子的启发,[20]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ideal convergence and Ideal Dunford integration on Banach space.
In this paper, we propose on type of Dunford integration in the concept of ideal convergenceThis wants to construct a new convergence of functions in Banach space to definite the measurablefunctions. The main result is construction on the type of Dunford as the Ideal integral. Ideal Dunfordintegral is an application of the convergence ideal in integration but weak integration. For this been followedthe usual route by first introducing the ideal Dunford integral and demonstrating for the ideal Dunfordintegral the most important statements related to it in the classical case. In this paper, we prove if thefunction f is Dunford integrable then it is ideal Dunford integrable, but conversely, this is not true. Thisgives the meaning of the extension of Dunford integration in our article. We are motivated by this by oneimportant example published by Schvabik and Guoju, [20].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信