大规模随机有向网络一致性二次误差的渐近分析

V. Preciado, A. Tahbaz-Salehi, A. Jadbabaie
{"title":"大规模随机有向网络一致性二次误差的渐近分析","authors":"V. Preciado, A. Tahbaz-Salehi, A. Jadbabaie","doi":"10.1109/ALLERTON.2009.5394941","DOIUrl":null,"url":null,"abstract":"We analyze the asymptotic variance of distributed consensus algorithms over large-scale switching random networks. Our analysis is focused on consensus algorithms over large, i.i.d., and directed Erdős-Rényi random graphs. We assume that every agent can communicate with any other agent with some fixed probability c/n, where c is the expected number of neighbors of each agent and n is the size of the network. We compute the variance of the random consensus value and show that it converges to zero at rate 1/n as the number of agents grows. We provide numerical simulations that illustrate our results.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic analysis of quadratic error of consensus in large-scale random directed networks\",\"authors\":\"V. Preciado, A. Tahbaz-Salehi, A. Jadbabaie\",\"doi\":\"10.1109/ALLERTON.2009.5394941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the asymptotic variance of distributed consensus algorithms over large-scale switching random networks. Our analysis is focused on consensus algorithms over large, i.i.d., and directed Erdős-Rényi random graphs. We assume that every agent can communicate with any other agent with some fixed probability c/n, where c is the expected number of neighbors of each agent and n is the size of the network. We compute the variance of the random consensus value and show that it converges to zero at rate 1/n as the number of agents grows. We provide numerical simulations that illustrate our results.\",\"PeriodicalId\":440015,\"journal\":{\"name\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2009.5394941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2009.5394941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了大规模交换随机网络中分布式一致性算法的渐近方差。我们的分析主要集中在大型的、有向的Erdős-Rényi随机图上的共识算法。我们假设每个智能体可以以固定的概率c/n与任何其他智能体通信,其中c是每个智能体的期望邻居数,n是网络的大小。我们计算了随机共识值的方差,并表明随着智能体数量的增加,它以1/n的速率收敛于零。我们提供了数值模拟来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic analysis of quadratic error of consensus in large-scale random directed networks
We analyze the asymptotic variance of distributed consensus algorithms over large-scale switching random networks. Our analysis is focused on consensus algorithms over large, i.i.d., and directed Erdős-Rényi random graphs. We assume that every agent can communicate with any other agent with some fixed probability c/n, where c is the expected number of neighbors of each agent and n is the size of the network. We compute the variance of the random consensus value and show that it converges to zero at rate 1/n as the number of agents grows. We provide numerical simulations that illustrate our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信