{"title":"重组和分区开销都依赖于问题的并行递归计算","authors":"A. Saha, M. D. Wagh","doi":"10.1109/ICPP.1994.152","DOIUrl":null,"url":null,"abstract":"Parallel recursive computations incorporating the unavoidable and significant parallel computing overheads, encompassing a wide variety of applications, can be modeled as T(n) = left{ {mathop {min }limits_{0 le r le n}^{t_{(),} } } right.left{ {max left{ {T(n - r),T(r) + k(r)} right} + mathop {mathop {lambda (n,r)}limits_{otherwise} }limits^{forn le n_{(),} } } right} where k(r) and X(n,r) represent the partition and recombination overheads respectively. The optimal partition size (solution to r of the above minmax recurrence relation) is nontrivial and is very different from the n/2 value conventionally used. Using the optimal partitions at every stage of the recursion enhances the performance greatly. In this paper we solve a challenging case of our parallel recursive model where the overhead functions are problem-dependent.","PeriodicalId":162043,"journal":{"name":"1994 International Conference on Parallel Processing Vol. 3","volume":"494 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel Recursive Computations where Both Recombination and Partition Overheads are Problem-Dependent\",\"authors\":\"A. Saha, M. D. Wagh\",\"doi\":\"10.1109/ICPP.1994.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel recursive computations incorporating the unavoidable and significant parallel computing overheads, encompassing a wide variety of applications, can be modeled as T(n) = left{ {mathop {min }limits_{0 le r le n}^{t_{(),} } } right.left{ {max left{ {T(n - r),T(r) + k(r)} right} + mathop {mathop {lambda (n,r)}limits_{otherwise} }limits^{forn le n_{(),} } } right} where k(r) and X(n,r) represent the partition and recombination overheads respectively. The optimal partition size (solution to r of the above minmax recurrence relation) is nontrivial and is very different from the n/2 value conventionally used. Using the optimal partitions at every stage of the recursion enhances the performance greatly. In this paper we solve a challenging case of our parallel recursive model where the overhead functions are problem-dependent.\",\"PeriodicalId\":162043,\"journal\":{\"name\":\"1994 International Conference on Parallel Processing Vol. 3\",\"volume\":\"494 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 International Conference on Parallel Processing Vol. 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.1994.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 International Conference on Parallel Processing Vol. 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1994.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
并行递归计算包含不可避免的和重要的并行计算开销,包括各种各样的应用程序,可以建模为T(n) =左{{mathop {min}limits_{0 le r le n}^{t_{(),}}}右。left{{max left{{T(n - r),T(r) + k(r)} right} + mathop {mathop {lambda (n,r)}limits_{否则}}limit ^{forn le n_{(),}} right}其中k(r)和X(n,r)分别表示分区开销和重组开销。最优分区大小(上述最小最大递归关系的r的解)是非平凡的,并且与通常使用的n/2值非常不同。在递归的每个阶段使用最优分区大大提高了性能。在本文中,我们解决了并行递归模型的一个具有挑战性的情况,其中开销函数是问题相关的。
Parallel Recursive Computations where Both Recombination and Partition Overheads are Problem-Dependent
Parallel recursive computations incorporating the unavoidable and significant parallel computing overheads, encompassing a wide variety of applications, can be modeled as T(n) = left{ {mathop {min }limits_{0 le r le n}^{t_{(),} } } right.left{ {max left{ {T(n - r),T(r) + k(r)} right} + mathop {mathop {lambda (n,r)}limits_{otherwise} }limits^{forn le n_{(),} } } right} where k(r) and X(n,r) represent the partition and recombination overheads respectively. The optimal partition size (solution to r of the above minmax recurrence relation) is nontrivial and is very different from the n/2 value conventionally used. Using the optimal partitions at every stage of the recursion enhances the performance greatly. In this paper we solve a challenging case of our parallel recursive model where the overhead functions are problem-dependent.