半阿波罗度规的等距

Peter Hästö *, Henri Lindén
{"title":"半阿波罗度规的等距","authors":"Peter Hästö *, Henri Lindén","doi":"10.1080/02781070410001712702","DOIUrl":null,"url":null,"abstract":"The half-Apollonian metric is a generalization of the hyperbolic metric, similar to the Apollonian metric. It can be defined in arbitrary domains in the euclidean space and has the advantages of being easy to calculate and estimate. We show that the half-Apollonian metric has many geodesics and use this fact to show that in most domains all the isometries of the metric are similarity mappings.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Isometries of the Half-Apollonian Metric\",\"authors\":\"Peter Hästö *, Henri Lindén\",\"doi\":\"10.1080/02781070410001712702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The half-Apollonian metric is a generalization of the hyperbolic metric, similar to the Apollonian metric. It can be defined in arbitrary domains in the euclidean space and has the advantages of being easy to calculate and estimate. We show that the half-Apollonian metric has many geodesics and use this fact to show that in most domains all the isometries of the metric are similarity mappings.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070410001712702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070410001712702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

半阿波罗度规是双曲度规的推广,类似于阿波罗度规。它可以在欧氏空间的任意域上定义,并且具有易于计算和估计的优点。我们证明了半阿波罗度规有许多测地线,并利用这一事实证明,在大多数域中,度规的所有等距都是相似映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isometries of the Half-Apollonian Metric
The half-Apollonian metric is a generalization of the hyperbolic metric, similar to the Apollonian metric. It can be defined in arbitrary domains in the euclidean space and has the advantages of being easy to calculate and estimate. We show that the half-Apollonian metric has many geodesics and use this fact to show that in most domains all the isometries of the metric are similarity mappings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信