上下文长度在人类活动识别中特征提取和序列建模中的作用

S. Hiremath, T. Ploetz
{"title":"上下文长度在人类活动识别中特征提取和序列建模中的作用","authors":"S. Hiremath, T. Ploetz","doi":"10.1145/3460421.3478825","DOIUrl":null,"url":null,"abstract":"At the core of human activity recognition (HAR) lies a time-series analysis problem. Given the sequential nature of the data, sensor readings are analyzed in their temporal contexts thereby focusing on two modeling components: feature extraction and sequence modeling for activity classification. Many HAR approaches utilize identical context lengths for both model components. In this paper we show that the consideration of such identical temporal contexts is not ideal. Motivated by the fact that features should capture temporally local characteristics of the data whereas sequence modeling should focus on longer ranging relationships, we modify a state-of-the-art HAR model (DeepConvLSTM) and experiment with different temporal contexts. Our evaluation on seven benchmark datasets demonstrates the benefit of separately optimizing temporal contexts for feature extraction and sequence modeling in HAR.","PeriodicalId":395295,"journal":{"name":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Role of Context Length for Feature Extraction and Sequence Modeling in Human Activity Recognition\",\"authors\":\"S. Hiremath, T. Ploetz\",\"doi\":\"10.1145/3460421.3478825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the core of human activity recognition (HAR) lies a time-series analysis problem. Given the sequential nature of the data, sensor readings are analyzed in their temporal contexts thereby focusing on two modeling components: feature extraction and sequence modeling for activity classification. Many HAR approaches utilize identical context lengths for both model components. In this paper we show that the consideration of such identical temporal contexts is not ideal. Motivated by the fact that features should capture temporally local characteristics of the data whereas sequence modeling should focus on longer ranging relationships, we modify a state-of-the-art HAR model (DeepConvLSTM) and experiment with different temporal contexts. Our evaluation on seven benchmark datasets demonstrates the benefit of separately optimizing temporal contexts for feature extraction and sequence modeling in HAR.\",\"PeriodicalId\":395295,\"journal\":{\"name\":\"Proceedings of the 2021 ACM International Symposium on Wearable Computers\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460421.3478825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460421.3478825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人类活动识别(HAR)的核心是时间序列分析问题。考虑到数据的顺序性质,传感器读数在其时间上下文中进行分析,从而重点关注两个建模组件:特征提取和活动分类的序列建模。许多HAR方法对两个模型组件使用相同的上下文长度。在本文中,我们表明,考虑这种相同的时间背景是不理想的。由于特征应该捕捉数据的时间局部特征,而序列建模应该关注更长的范围关系,我们修改了最先进的HAR模型(DeepConvLSTM),并在不同的时间背景下进行了实验。我们对七个基准数据集的评估表明,在HAR中分别优化时间上下文用于特征提取和序列建模的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Role of Context Length for Feature Extraction and Sequence Modeling in Human Activity Recognition
At the core of human activity recognition (HAR) lies a time-series analysis problem. Given the sequential nature of the data, sensor readings are analyzed in their temporal contexts thereby focusing on two modeling components: feature extraction and sequence modeling for activity classification. Many HAR approaches utilize identical context lengths for both model components. In this paper we show that the consideration of such identical temporal contexts is not ideal. Motivated by the fact that features should capture temporally local characteristics of the data whereas sequence modeling should focus on longer ranging relationships, we modify a state-of-the-art HAR model (DeepConvLSTM) and experiment with different temporal contexts. Our evaluation on seven benchmark datasets demonstrates the benefit of separately optimizing temporal contexts for feature extraction and sequence modeling in HAR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信