由偏置度量引起的傅里叶自反分割

Yang Xu, Haibin Kan, G. Han
{"title":"由偏置度量引起的傅里叶自反分割","authors":"Yang Xu, Haibin Kan, G. Han","doi":"10.1109/ISIT45174.2021.9518140","DOIUrl":null,"url":null,"abstract":"Let <tex>$\\mathrm{H}=\\prod\\nolimits_{i\\in\\Omega}H_{i}$</tex> be the cartesian product of finite abelian groups <tex>$H_{i}$</tex> indexed by a finite set <tex>$\\Omega$</tex>. Any partition of H gives rise to a dual partition of its character group <tex>$\\hat{\\mathrm{H}}$</tex>. A given poset (i.e., partially ordered set) P on <tex>$\\Omega$</tex> gives rise to the corresponding poset metric on H, which further leads to a partition <tex>$\\Gamma$</tex> of H. We prove that if <tex>$\\Gamma$</tex> is Fourier-reflexive, then its dual partition <tex>$\\hat{\\Gamma}$</tex> coincides with the partition of <tex>$\\hat{\\mathrm{H}}$</tex> induced by <tex>$\\overline{\\mathrm{P}}$</tex>, the dual poset of P, and moreover, P is necessarily hierarchical. This result establishes a conjecture proposed by Heide Gluesing-Luerssen in [4]. We also show that with some other assumptions, <tex>$\\hat{\\Gamma}$</tex> is finer than the partition of <tex>$\\hat{\\mathrm{H}}$</tex> induced by <tex>$\\overline{\\mathrm{P}}$</tex>. We prove these results by relating the partitions with certain family of polynomials, whose basic properties are studied in a slightly more general setting.","PeriodicalId":299118,"journal":{"name":"2021 IEEE International Symposium on Information Theory (ISIT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fourier-Reflexive Partitions Induced by Poset Metric\",\"authors\":\"Yang Xu, Haibin Kan, G. Han\",\"doi\":\"10.1109/ISIT45174.2021.9518140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <tex>$\\\\mathrm{H}=\\\\prod\\\\nolimits_{i\\\\in\\\\Omega}H_{i}$</tex> be the cartesian product of finite abelian groups <tex>$H_{i}$</tex> indexed by a finite set <tex>$\\\\Omega$</tex>. Any partition of H gives rise to a dual partition of its character group <tex>$\\\\hat{\\\\mathrm{H}}$</tex>. A given poset (i.e., partially ordered set) P on <tex>$\\\\Omega$</tex> gives rise to the corresponding poset metric on H, which further leads to a partition <tex>$\\\\Gamma$</tex> of H. We prove that if <tex>$\\\\Gamma$</tex> is Fourier-reflexive, then its dual partition <tex>$\\\\hat{\\\\Gamma}$</tex> coincides with the partition of <tex>$\\\\hat{\\\\mathrm{H}}$</tex> induced by <tex>$\\\\overline{\\\\mathrm{P}}$</tex>, the dual poset of P, and moreover, P is necessarily hierarchical. This result establishes a conjecture proposed by Heide Gluesing-Luerssen in [4]. We also show that with some other assumptions, <tex>$\\\\hat{\\\\Gamma}$</tex> is finer than the partition of <tex>$\\\\hat{\\\\mathrm{H}}$</tex> induced by <tex>$\\\\overline{\\\\mathrm{P}}$</tex>. We prove these results by relating the partitions with certain family of polynomials, whose basic properties are studied in a slightly more general setting.\",\"PeriodicalId\":299118,\"journal\":{\"name\":\"2021 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT45174.2021.9518140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT45174.2021.9518140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设$\mathrm{H}=\prod\nolimits_{i\in\Omega}H_{i}$为有限阿贝尔群$H_{i}$的笛卡尔积,以一个有限集合$\Omega$为索引。H的任何分区都会产生其字符群$\hat{\mathrm{H}}$的对偶分区。一个给定的偏序集(即偏序集)P在$\Omega$上得到H上相应的偏序集度量,进而得到H的一个分拆$\Gamma$。我们证明了如果$\Gamma$是傅立叶自反的,那么它的对偶分拆$\hat{\Gamma}$与P的对偶偏集$\overline{\mathrm{P}}$引起的对$\hat{\mathrm{H}}$的分拆重合,而且P必然是有层次的。这一结果证实了Heide Gluesing-Luerssen在[4]中提出的一个猜想。我们还表明,在一些其他假设下,$\hat{\Gamma}$比$\overline{\mathrm{P}}$引起的$\hat{\mathrm{H}}$分割更精细。我们通过将划分与多项式族联系起来来证明这些结果,这些多项式族的基本性质是在稍微更一般的设置中研究的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier-Reflexive Partitions Induced by Poset Metric
Let $\mathrm{H}=\prod\nolimits_{i\in\Omega}H_{i}$ be the cartesian product of finite abelian groups $H_{i}$ indexed by a finite set $\Omega$. Any partition of H gives rise to a dual partition of its character group $\hat{\mathrm{H}}$. A given poset (i.e., partially ordered set) P on $\Omega$ gives rise to the corresponding poset metric on H, which further leads to a partition $\Gamma$ of H. We prove that if $\Gamma$ is Fourier-reflexive, then its dual partition $\hat{\Gamma}$ coincides with the partition of $\hat{\mathrm{H}}$ induced by $\overline{\mathrm{P}}$, the dual poset of P, and moreover, P is necessarily hierarchical. This result establishes a conjecture proposed by Heide Gluesing-Luerssen in [4]. We also show that with some other assumptions, $\hat{\Gamma}$ is finer than the partition of $\hat{\mathrm{H}}$ induced by $\overline{\mathrm{P}}$. We prove these results by relating the partitions with certain family of polynomials, whose basic properties are studied in a slightly more general setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信