tsetitin还是不tsetitin ?CNF变换对特征模型分析的影响

Elias Kuiter, S. Krieter, Chico Sundermann, Thomas Thüm, G. Saake
{"title":"tsetitin还是不tsetitin ?CNF变换对特征模型分析的影响","authors":"Elias Kuiter, S. Krieter, Chico Sundermann, Thomas Thüm, G. Saake","doi":"10.1145/3551349.3556938","DOIUrl":null,"url":null,"abstract":"Feature modeling is widely used to systematically model features of variant-rich software systems and their dependencies. By translating feature models into propositional formulas and analyzing them with solvers, a wide range of automated analyses across all phases of the software development process become possible. Most solvers only accept formulas in conjunctive normal form (CNF), so an additional transformation of feature models is often necessary. However, it is unclear whether this transformation has a noticeable impact on analyses. In this paper, we compare three transformations (i.e., distributive, Tseitin, and Plaisted-Greenbaum) for bringing feature-model formulas into CNF. We analyze which transformation can be used to correctly perform feature-model analyses and evaluate three CNF transformation tools (i.e., FeatureIDE, KConfigReader, and Z3) on a corpus of 22 real-world feature models. Our empirical evaluation illustrates that some CNF transformations do not scale to complex feature models or even lead to wrong results for model-counting analyses. Further, the choice of the CNF transformation can substantially influence the performance of subsequent analyses.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Tseitin or not Tseitin? The Impact of CNF Transformations on Feature-Model Analyses\",\"authors\":\"Elias Kuiter, S. Krieter, Chico Sundermann, Thomas Thüm, G. Saake\",\"doi\":\"10.1145/3551349.3556938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature modeling is widely used to systematically model features of variant-rich software systems and their dependencies. By translating feature models into propositional formulas and analyzing them with solvers, a wide range of automated analyses across all phases of the software development process become possible. Most solvers only accept formulas in conjunctive normal form (CNF), so an additional transformation of feature models is often necessary. However, it is unclear whether this transformation has a noticeable impact on analyses. In this paper, we compare three transformations (i.e., distributive, Tseitin, and Plaisted-Greenbaum) for bringing feature-model formulas into CNF. We analyze which transformation can be used to correctly perform feature-model analyses and evaluate three CNF transformation tools (i.e., FeatureIDE, KConfigReader, and Z3) on a corpus of 22 real-world feature models. Our empirical evaluation illustrates that some CNF transformations do not scale to complex feature models or even lead to wrong results for model-counting analyses. Further, the choice of the CNF transformation can substantially influence the performance of subsequent analyses.\",\"PeriodicalId\":197939,\"journal\":{\"name\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551349.3556938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3556938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

特征建模被广泛地用于系统地对具有丰富变体的软件系统及其依赖关系的特征进行建模。通过将特征模型转换为命题公式并使用求解器对其进行分析,可以在软件开发过程的所有阶段进行广泛的自动化分析。大多数求解器只接受合取范式(CNF)的公式,因此通常需要对特征模型进行额外的转换。然而,尚不清楚这种转换是否对分析有显著影响。在本文中,我们比较了将特征模型公式引入CNF的三种变换(即,distributive, tseittin和Plaisted-Greenbaum)。我们分析了哪些转换可以用来正确地执行特征模型分析,并在22个真实特征模型的语料库上评估了三种CNF转换工具(即FeatureIDE, KConfigReader和Z3)。我们的经验评估表明,一些CNF转换不能扩展到复杂的特征模型,甚至会导致模型计数分析的错误结果。此外,CNF变换的选择可以极大地影响后续分析的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tseitin or not Tseitin? The Impact of CNF Transformations on Feature-Model Analyses
Feature modeling is widely used to systematically model features of variant-rich software systems and their dependencies. By translating feature models into propositional formulas and analyzing them with solvers, a wide range of automated analyses across all phases of the software development process become possible. Most solvers only accept formulas in conjunctive normal form (CNF), so an additional transformation of feature models is often necessary. However, it is unclear whether this transformation has a noticeable impact on analyses. In this paper, we compare three transformations (i.e., distributive, Tseitin, and Plaisted-Greenbaum) for bringing feature-model formulas into CNF. We analyze which transformation can be used to correctly perform feature-model analyses and evaluate three CNF transformation tools (i.e., FeatureIDE, KConfigReader, and Z3) on a corpus of 22 real-world feature models. Our empirical evaluation illustrates that some CNF transformations do not scale to complex feature models or even lead to wrong results for model-counting analyses. Further, the choice of the CNF transformation can substantially influence the performance of subsequent analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信