平均掷2.43次骰子命中Prime

N. Alon, Y. Malinovsky
{"title":"平均掷2.43次骰子命中Prime","authors":"N. Alon, Y. Malinovsky","doi":"10.1080/00031305.2023.2179664","DOIUrl":null,"url":null,"abstract":"Abstract What is the number of rolls of fair six-sided dice until the first time the total sum of all rolls is a prime? We compute the expectation and the variance of this random variable up to an additive error of less than . This is a solution to a puzzle suggested by DasGupta in the Bulletin of the Institute of Mathematical Statistics, where the published solution is incomplete. The proof is simple, combining a basic dynamic programming algorithm with a quick Matlab computation and basic facts about the distribution of primes.","PeriodicalId":342642,"journal":{"name":"The American Statistician","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hitting a Prime in 2.43 Dice Rolls (On Average)\",\"authors\":\"N. Alon, Y. Malinovsky\",\"doi\":\"10.1080/00031305.2023.2179664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract What is the number of rolls of fair six-sided dice until the first time the total sum of all rolls is a prime? We compute the expectation and the variance of this random variable up to an additive error of less than . This is a solution to a puzzle suggested by DasGupta in the Bulletin of the Institute of Mathematical Statistics, where the published solution is incomplete. The proof is simple, combining a basic dynamic programming algorithm with a quick Matlab computation and basic facts about the distribution of primes.\",\"PeriodicalId\":342642,\"journal\":{\"name\":\"The American Statistician\",\"volume\":\"386 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American Statistician\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2023.2179664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Statistician","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00031305.2023.2179664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在所有骰子的总数第一次为素数之前,投掷均匀六面骰子的次数是多少?我们计算这个随机变量的期望和方差直到加性误差小于。这是DasGupta在《数理统计研究所公报》上提出的一个谜题的解决方案,发表的解决方案是不完整的。证明很简单,结合了基本的动态规划算法、快速的Matlab计算和素数分布的基本事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hitting a Prime in 2.43 Dice Rolls (On Average)
Abstract What is the number of rolls of fair six-sided dice until the first time the total sum of all rolls is a prime? We compute the expectation and the variance of this random variable up to an additive error of less than . This is a solution to a puzzle suggested by DasGupta in the Bulletin of the Institute of Mathematical Statistics, where the published solution is incomplete. The proof is simple, combining a basic dynamic programming algorithm with a quick Matlab computation and basic facts about the distribution of primes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信