HEVC中任意缩小预编码视频的机器学习

Luong Pham Van, J. D. Praeter, G. Wallendael, J. D. Cock, R. Walle
{"title":"HEVC中任意缩小预编码视频的机器学习","authors":"Luong Pham Van, J. D. Praeter, G. Wallendael, J. D. Cock, R. Walle","doi":"10.1109/ICCE.2015.7066464","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a machine learning based transcoding scheme for arbitrarily downsizing a pre-encoded High Efficiency Video Coding video. The spatial scaling factor can be freely selected to adapt the output bit rate to the bandwidth of the network. Furthermore, machine learning techniques can exploit the correlation between input and output coding information to predict the split-flag of coding units in a P-frame. We analyzed the performance of both offline and online training in the learning phase of transcoding. The experimental results show that the proposed techniques significantly reduce the transcoding complexity and achieve trade-offs between coding performance and complexity. In addition, we demonstrate that online training performs better than offline training.","PeriodicalId":169402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics (ICCE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Machine learning for arbitrary downsizing of pre-encoded video in HEVC\",\"authors\":\"Luong Pham Van, J. D. Praeter, G. Wallendael, J. D. Cock, R. Walle\",\"doi\":\"10.1109/ICCE.2015.7066464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a machine learning based transcoding scheme for arbitrarily downsizing a pre-encoded High Efficiency Video Coding video. The spatial scaling factor can be freely selected to adapt the output bit rate to the bandwidth of the network. Furthermore, machine learning techniques can exploit the correlation between input and output coding information to predict the split-flag of coding units in a P-frame. We analyzed the performance of both offline and online training in the learning phase of transcoding. The experimental results show that the proposed techniques significantly reduce the transcoding complexity and achieve trade-offs between coding performance and complexity. In addition, we demonstrate that online training performs better than offline training.\",\"PeriodicalId\":169402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2015.7066464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2015.7066464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一种基于机器学习的转码方案,用于任意缩小预编码的高效视频编码视频。空间比例因子可以自由选择,使输出比特率适应网络带宽。此外,机器学习技术可以利用输入和输出编码信息之间的相关性来预测p帧中编码单元的分裂标志。我们分析了离线和在线培训在转码学习阶段的表现。实验结果表明,所提技术显著降低了转码复杂度,实现了编码性能与复杂度之间的平衡。此外,我们证明了在线培训比离线培训表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for arbitrary downsizing of pre-encoded video in HEVC
In this paper, we propose a machine learning based transcoding scheme for arbitrarily downsizing a pre-encoded High Efficiency Video Coding video. The spatial scaling factor can be freely selected to adapt the output bit rate to the bandwidth of the network. Furthermore, machine learning techniques can exploit the correlation between input and output coding information to predict the split-flag of coding units in a P-frame. We analyzed the performance of both offline and online training in the learning phase of transcoding. The experimental results show that the proposed techniques significantly reduce the transcoding complexity and achieve trade-offs between coding performance and complexity. In addition, we demonstrate that online training performs better than offline training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信