$ \mathbb {R}^N $中的奇异拟线性临界Schrödinger方程

Laura Baldelli, Roberta Filippucci
{"title":"$ \\mathbb {R}^N $中的奇异拟线性临界Schrödinger方程","authors":"Laura Baldelli, Roberta Filippucci","doi":"10.3934/cpaa.2022060","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We prove multiplicity results for solutions, both with positive and negative energy, for a class of singular quasilinear Schrödinger equations in the entire <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathbb {R}^N $\\end{document}</tex-math></inline-formula> involving a critical term, nontrivial weights and positive parameters <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\lambda $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula>, covering several physical models, coming from plasma physics as well as high-power ultra short laser in matter. Also the symmetric setting is investigated. Our proofs relay on variational tools, including concentration compactness principles because of the delicate situation of the double lack of compactness. In addition, a necessary reformulation of the original problem in a suitable variational setting, produces a singular function, delicate to be managed.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Singular quasilinear critical Schrödinger equations in $ \\\\mathbb {R}^N $\",\"authors\":\"Laura Baldelli, Roberta Filippucci\",\"doi\":\"10.3934/cpaa.2022060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We prove multiplicity results for solutions, both with positive and negative energy, for a class of singular quasilinear Schrödinger equations in the entire <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\mathbb {R}^N $\\\\end{document}</tex-math></inline-formula> involving a critical term, nontrivial weights and positive parameters <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\lambda $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\beta $\\\\end{document}</tex-math></inline-formula>, covering several physical models, coming from plasma physics as well as high-power ultra short laser in matter. Also the symmetric setting is investigated. Our proofs relay on variational tools, including concentration compactness principles because of the delicate situation of the double lack of compactness. In addition, a necessary reformulation of the original problem in a suitable variational setting, produces a singular function, delicate to be managed.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure &amp; Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure &amp; Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

We prove multiplicity results for solutions, both with positive and negative energy, for a class of singular quasilinear Schrödinger equations in the entire \begin{document}$ \mathbb {R}^N $\end{document} involving a critical term, nontrivial weights and positive parameters \begin{document}$ \lambda $\end{document}, \begin{document}$ \beta $\end{document}, covering several physical models, coming from plasma physics as well as high-power ultra short laser in matter. Also the symmetric setting is investigated. Our proofs relay on variational tools, including concentration compactness principles because of the delicate situation of the double lack of compactness. In addition, a necessary reformulation of the original problem in a suitable variational setting, produces a singular function, delicate to be managed.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular quasilinear critical Schrödinger equations in $ \mathbb {R}^N $

We prove multiplicity results for solutions, both with positive and negative energy, for a class of singular quasilinear Schrödinger equations in the entire \begin{document}$ \mathbb {R}^N $\end{document} involving a critical term, nontrivial weights and positive parameters \begin{document}$ \lambda $\end{document}, \begin{document}$ \beta $\end{document}, covering several physical models, coming from plasma physics as well as high-power ultra short laser in matter. Also the symmetric setting is investigated. Our proofs relay on variational tools, including concentration compactness principles because of the delicate situation of the double lack of compactness. In addition, a necessary reformulation of the original problem in a suitable variational setting, produces a singular function, delicate to be managed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信