分类和预测不同骨肉瘤类型的机器学习方法

Sanket Mahore, Kalyani Bhole, S. Rathod
{"title":"分类和预测不同骨肉瘤类型的机器学习方法","authors":"Sanket Mahore, Kalyani Bhole, S. Rathod","doi":"10.1109/SPIN52536.2021.9566061","DOIUrl":null,"url":null,"abstract":"Family physicians rarely see a malignant bone cancer because it is hard to find, and most of the time, bone cancer is benign. It is very time-consuming and complicated for the pathologist to classify Osteosarcoma histopathological images. Typically Osteosarcoma classifies into viable, Non-viable, and Non-tumor classes, but intra-class variation and inter-class similarity are complex tasks. This paper used the Random Forest(RF) machine learning algorithm, which efficiently and accurately classifies Osteosarcoma into Viable, Non-viable, and Non-tumor classes. The Random Forest method gives a classification accuracy of 92.40%, a sensitivity of 85.44%, and specificity 93.38% with AUC=0.95.","PeriodicalId":343177,"journal":{"name":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Machine Learning approach to classify and predict different Osteosarcoma types\",\"authors\":\"Sanket Mahore, Kalyani Bhole, S. Rathod\",\"doi\":\"10.1109/SPIN52536.2021.9566061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Family physicians rarely see a malignant bone cancer because it is hard to find, and most of the time, bone cancer is benign. It is very time-consuming and complicated for the pathologist to classify Osteosarcoma histopathological images. Typically Osteosarcoma classifies into viable, Non-viable, and Non-tumor classes, but intra-class variation and inter-class similarity are complex tasks. This paper used the Random Forest(RF) machine learning algorithm, which efficiently and accurately classifies Osteosarcoma into Viable, Non-viable, and Non-tumor classes. The Random Forest method gives a classification accuracy of 92.40%, a sensitivity of 85.44%, and specificity 93.38% with AUC=0.95.\",\"PeriodicalId\":343177,\"journal\":{\"name\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN52536.2021.9566061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN52536.2021.9566061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

家庭医生很少看到恶性骨癌,因为它很难发现,大多数时候,骨癌是良性的。骨肉瘤组织病理图像的分类是病理学家非常费时和复杂的工作。骨肉瘤通常分为可活类、不可活类和非肿瘤类,但类内变异和类间相似性是一项复杂的任务。本文采用随机森林(Random Forest, RF)机器学习算法,高效准确地将骨肉瘤分为可存活、不可存活和非肿瘤三类。随机森林方法的分类准确率为92.40%,灵敏度为85.44%,特异性为93.38%,AUC=0.95。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning approach to classify and predict different Osteosarcoma types
Family physicians rarely see a malignant bone cancer because it is hard to find, and most of the time, bone cancer is benign. It is very time-consuming and complicated for the pathologist to classify Osteosarcoma histopathological images. Typically Osteosarcoma classifies into viable, Non-viable, and Non-tumor classes, but intra-class variation and inter-class similarity are complex tasks. This paper used the Random Forest(RF) machine learning algorithm, which efficiently and accurately classifies Osteosarcoma into Viable, Non-viable, and Non-tumor classes. The Random Forest method gives a classification accuracy of 92.40%, a sensitivity of 85.44%, and specificity 93.38% with AUC=0.95.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信