J. Landívar, C. Ormaza, Víctor Asanza, Verónica Ojeda, Juan C. Aviles, D. Peluffo-Ordóñez
{"title":"基于监督学习算法的三边室内定位","authors":"J. Landívar, C. Ormaza, Víctor Asanza, Verónica Ojeda, Juan C. Aviles, D. Peluffo-Ordóñez","doi":"10.1109/AE54730.2022.9920073","DOIUrl":null,"url":null,"abstract":"The indoor positioning system (IPS) has a wide range of applications, due to the advantages it has over Global Positioning Systems (GPS) in indoor environments. Due to the biosecurity measures established by the World Health Organization (WHO), where the social distancing is provided, being stricter in indoor environments. This work proposes the design of a positioning system based on trilateration. The main objective is to predict the positioning in both the ‘x’ and ‘y’ axis in an area of 8 square meters. For this purpose, 3 Access Points (AP) and a Mobile Device (DM), which works as a raster, have been used. The Received Signal Strength Indication (RSSI) values measured at each AP are the variables used in regression algorithms that predict the x and y position. In this work, 24 regression algorithms have been evaluated, of which the lowest errors obtained are 70.322 [cm] and 30.1508 [cm], for the x and y axes, respectively.","PeriodicalId":113076,"journal":{"name":"2022 International Conference on Applied Electronics (AE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trilateration-based Indoor Location using Supervised Learning Algorithms\",\"authors\":\"J. Landívar, C. Ormaza, Víctor Asanza, Verónica Ojeda, Juan C. Aviles, D. Peluffo-Ordóñez\",\"doi\":\"10.1109/AE54730.2022.9920073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The indoor positioning system (IPS) has a wide range of applications, due to the advantages it has over Global Positioning Systems (GPS) in indoor environments. Due to the biosecurity measures established by the World Health Organization (WHO), where the social distancing is provided, being stricter in indoor environments. This work proposes the design of a positioning system based on trilateration. The main objective is to predict the positioning in both the ‘x’ and ‘y’ axis in an area of 8 square meters. For this purpose, 3 Access Points (AP) and a Mobile Device (DM), which works as a raster, have been used. The Received Signal Strength Indication (RSSI) values measured at each AP are the variables used in regression algorithms that predict the x and y position. In this work, 24 regression algorithms have been evaluated, of which the lowest errors obtained are 70.322 [cm] and 30.1508 [cm], for the x and y axes, respectively.\",\"PeriodicalId\":113076,\"journal\":{\"name\":\"2022 International Conference on Applied Electronics (AE)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Applied Electronics (AE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AE54730.2022.9920073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Applied Electronics (AE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AE54730.2022.9920073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trilateration-based Indoor Location using Supervised Learning Algorithms
The indoor positioning system (IPS) has a wide range of applications, due to the advantages it has over Global Positioning Systems (GPS) in indoor environments. Due to the biosecurity measures established by the World Health Organization (WHO), where the social distancing is provided, being stricter in indoor environments. This work proposes the design of a positioning system based on trilateration. The main objective is to predict the positioning in both the ‘x’ and ‘y’ axis in an area of 8 square meters. For this purpose, 3 Access Points (AP) and a Mobile Device (DM), which works as a raster, have been used. The Received Signal Strength Indication (RSSI) values measured at each AP are the variables used in regression algorithms that predict the x and y position. In this work, 24 regression algorithms have been evaluated, of which the lowest errors obtained are 70.322 [cm] and 30.1508 [cm], for the x and y axes, respectively.