Fan Zhang, Itay Laish, Ayelet Benjamini, Amir Feder
{"title":"多任务变压器在临床笔记中的分段分类","authors":"Fan Zhang, Itay Laish, Ayelet Benjamini, Amir Feder","doi":"10.18653/v1/2022.louhi-1.7","DOIUrl":null,"url":null,"abstract":"Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Section Classification in Clinical Notes with Multi-task Transformers\",\"authors\":\"Fan Zhang, Itay Laish, Ayelet Benjamini, Amir Feder\",\"doi\":\"10.18653/v1/2022.louhi-1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.\",\"PeriodicalId\":448872,\"journal\":{\"name\":\"International Workshop on Health Text Mining and Information Analysis\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Health Text Mining and Information Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.louhi-1.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Health Text Mining and Information Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.louhi-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Section Classification in Clinical Notes with Multi-task Transformers
Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.