多任务变压器在临床笔记中的分段分类

Fan Zhang, Itay Laish, Ayelet Benjamini, Amir Feder
{"title":"多任务变压器在临床笔记中的分段分类","authors":"Fan Zhang, Itay Laish, Ayelet Benjamini, Amir Feder","doi":"10.18653/v1/2022.louhi-1.7","DOIUrl":null,"url":null,"abstract":"Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Section Classification in Clinical Notes with Multi-task Transformers\",\"authors\":\"Fan Zhang, Itay Laish, Ayelet Benjamini, Amir Feder\",\"doi\":\"10.18653/v1/2022.louhi-1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.\",\"PeriodicalId\":448872,\"journal\":{\"name\":\"International Workshop on Health Text Mining and Information Analysis\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Health Text Mining and Information Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.louhi-1.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Health Text Mining and Information Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.louhi-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

临床记录是电子健康记录的支柱,通常包含在其他结构化数据中未观察到的重要信息。不幸的是,临床记录的非结构化性质可能导致与患者相关的关键信息丢失。将临床笔记组织成不同部分的算法经常被提出,以便医疗专业人员更好地访问给定笔记中的信息。然而,这些算法通常假设笔记上有一个给定的分区,并根据该信息对部分类型进行分类。在本文中,我们提出了一种多任务的笔记分割解决方案,其中单个模型识别上下文变化,并用其医学相关的标题标记每个部分。分布内(MIMIC-III)和分布外(私人持有)数据集的结果表明,我们的方法成功地识别了不同医院系统中的笔记部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Section Classification in Clinical Notes with Multi-task Transformers
Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信