基于数据流的交通信息系统评价框架

Sandra Geisler, C. Quix, S. Schiffer
{"title":"基于数据流的交通信息系统评价框架","authors":"Sandra Geisler, C. Quix, S. Schiffer","doi":"10.1145/1878500.1878505","DOIUrl":null,"url":null,"abstract":"Traffic information systems based on mobile, in-car sensor technology are a challenge for data management systems as a huge amount of data has to be processed in real-time. Data mining methods must be adapted to cope with these challenges in handling streaming data. Although several data stream mining methods have been proposed, an evaluation of such methods in the context of traffic applications is yet missing. In this paper, we present an evaluation framework for data stream mining for traffic applications. We apply a traffic simulation software to emulate the generation of traffic data by mobile probes. The framework is evaluated in a first case study, namely queue-end detection. We show first results of the evaluation of a data stream mining method, varying multiple parameters for the traffic simulation. The goal of our work is to identify parameter settings for which the data stream mining methods produce useful results for the traffic application at hand.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A data stream-based evaluation framework for traffic information systems\",\"authors\":\"Sandra Geisler, C. Quix, S. Schiffer\",\"doi\":\"10.1145/1878500.1878505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic information systems based on mobile, in-car sensor technology are a challenge for data management systems as a huge amount of data has to be processed in real-time. Data mining methods must be adapted to cope with these challenges in handling streaming data. Although several data stream mining methods have been proposed, an evaluation of such methods in the context of traffic applications is yet missing. In this paper, we present an evaluation framework for data stream mining for traffic applications. We apply a traffic simulation software to emulate the generation of traffic data by mobile probes. The framework is evaluated in a first case study, namely queue-end detection. We show first results of the evaluation of a data stream mining method, varying multiple parameters for the traffic simulation. The goal of our work is to identify parameter settings for which the data stream mining methods produce useful results for the traffic application at hand.\",\"PeriodicalId\":190366,\"journal\":{\"name\":\"International Workshop on GeoStreaming\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on GeoStreaming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1878500.1878505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878500.1878505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

基于移动、车载传感器技术的交通信息系统对数据管理系统来说是一个挑战,因为需要实时处理大量数据。数据挖掘方法必须适应处理流数据时的这些挑战。虽然已经提出了几种数据流挖掘方法,但在交通应用的背景下对这些方法的评估仍然缺失。在本文中,我们提出了一个用于交通应用的数据流挖掘的评估框架。我们应用交通仿真软件来模拟移动探测器产生的交通数据。该框架在第一个案例研究中进行评估,即队列端检测。我们展示了数据流挖掘方法评估的第一个结果,改变了交通模拟的多个参数。我们工作的目标是确定数据流挖掘方法为手头的交通应用程序产生有用结果的参数设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data stream-based evaluation framework for traffic information systems
Traffic information systems based on mobile, in-car sensor technology are a challenge for data management systems as a huge amount of data has to be processed in real-time. Data mining methods must be adapted to cope with these challenges in handling streaming data. Although several data stream mining methods have been proposed, an evaluation of such methods in the context of traffic applications is yet missing. In this paper, we present an evaluation framework for data stream mining for traffic applications. We apply a traffic simulation software to emulate the generation of traffic data by mobile probes. The framework is evaluated in a first case study, namely queue-end detection. We show first results of the evaluation of a data stream mining method, varying multiple parameters for the traffic simulation. The goal of our work is to identify parameter settings for which the data stream mining methods produce useful results for the traffic application at hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信