广义码复用超宽带系统的最大似然检测器

Hyunwoo Cho, Qi Zhou, Xiaoli Ma
{"title":"广义码复用超宽带系统的最大似然检测器","authors":"Hyunwoo Cho, Qi Zhou, Xiaoli Ma","doi":"10.1109/ICUWB.2013.6663855","DOIUrl":null,"url":null,"abstract":"Generalized code-multiplexing (GCM) systems have been recently proposed for non-coherent ultra-wideband communications for their simple receiver structure. By simply correlating the outputs of energy integrators with decoding codes, the GCM receiver detects information symbols without the need of delay components for transmitted reference or analog carriers for frequency-shifted reference. In addition, the GCM systems subsume existing code-multiplexing designs such as code-multiplexed transmitted reference (CM-TR) and code-shifted reference (CSR) and could even provide better error performance and/or higher data rate. However, the existing GCM receiver is generally not a maximum likelihood detector (MLD). In this paper, we propose MLDs for GCM systems based on the statistics of the signals of GCM receivers. With the aid of the statistics, the MLDs for GCM systems inherit the simple non-coherent structure of GCM receivers and further improve the error performance. Extensive simulations are conducted to show the considerable performance gain of the proposed MLDs compared to the GCM receivers for both CSR codes and optimal GCM codes.","PeriodicalId":159159,"journal":{"name":"2013 IEEE International Conference on Ultra-Wideband (ICUWB)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum likelihood detectors for generalized code-multiplexing ultra-wideband systems\",\"authors\":\"Hyunwoo Cho, Qi Zhou, Xiaoli Ma\",\"doi\":\"10.1109/ICUWB.2013.6663855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized code-multiplexing (GCM) systems have been recently proposed for non-coherent ultra-wideband communications for their simple receiver structure. By simply correlating the outputs of energy integrators with decoding codes, the GCM receiver detects information symbols without the need of delay components for transmitted reference or analog carriers for frequency-shifted reference. In addition, the GCM systems subsume existing code-multiplexing designs such as code-multiplexed transmitted reference (CM-TR) and code-shifted reference (CSR) and could even provide better error performance and/or higher data rate. However, the existing GCM receiver is generally not a maximum likelihood detector (MLD). In this paper, we propose MLDs for GCM systems based on the statistics of the signals of GCM receivers. With the aid of the statistics, the MLDs for GCM systems inherit the simple non-coherent structure of GCM receivers and further improve the error performance. Extensive simulations are conducted to show the considerable performance gain of the proposed MLDs compared to the GCM receivers for both CSR codes and optimal GCM codes.\",\"PeriodicalId\":159159,\"journal\":{\"name\":\"2013 IEEE International Conference on Ultra-Wideband (ICUWB)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Ultra-Wideband (ICUWB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUWB.2013.6663855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Ultra-Wideband (ICUWB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUWB.2013.6663855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义码复用(GCM)系统由于其接收机结构简单,近年来被提出用于非相干超宽带通信。通过简单地将能量积分器的输出与解码码相关联,GCM接收器检测信息符号,而不需要传输参考的延迟组件或频移参考的模拟载波。此外,GCM系统包含现有的码多路复用设计,如码多路传输参考(CM-TR)和码移参考(CSR),甚至可以提供更好的错误性能和/或更高的数据速率。然而,现有的GCM接收机通常不是最大似然检测器(MLD)。在本文中,我们提出了基于GCM接收机信号统计的GCM系统的mld。在统计的帮助下,GCM系统的mld继承了GCM接收机简单的非相干结构,进一步提高了误差性能。大量的仿真结果表明,对于CSR码和最优GCM码,与GCM接收机相比,所提出的mld具有相当大的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood detectors for generalized code-multiplexing ultra-wideband systems
Generalized code-multiplexing (GCM) systems have been recently proposed for non-coherent ultra-wideband communications for their simple receiver structure. By simply correlating the outputs of energy integrators with decoding codes, the GCM receiver detects information symbols without the need of delay components for transmitted reference or analog carriers for frequency-shifted reference. In addition, the GCM systems subsume existing code-multiplexing designs such as code-multiplexed transmitted reference (CM-TR) and code-shifted reference (CSR) and could even provide better error performance and/or higher data rate. However, the existing GCM receiver is generally not a maximum likelihood detector (MLD). In this paper, we propose MLDs for GCM systems based on the statistics of the signals of GCM receivers. With the aid of the statistics, the MLDs for GCM systems inherit the simple non-coherent structure of GCM receivers and further improve the error performance. Extensive simulations are conducted to show the considerable performance gain of the proposed MLDs compared to the GCM receivers for both CSR codes and optimal GCM codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信