测量每像素表面粗糙度的照明规划

Kota Arieda, Takahiro Okabe
{"title":"测量每像素表面粗糙度的照明规划","authors":"Kota Arieda, Takahiro Okabe","doi":"10.23919/MVA51890.2021.9511392","DOIUrl":null,"url":null,"abstract":"Measuring per-pixel surface roughness is useful for machine vision applications such as visual inspection. The surface roughness can be recovered from specular reflection components, but a large number of images taken under different lighting and/or viewing directions is required in general so that sufficient specular reflection components are observed at each pixel. In this paper, we propose a robust and efficient method for per-pixel estimation of surface roughness. Specifically, we propose an illumination planning based on noise propagation analysis; it achieves the surface roughness estimation from a small number of images taken under the optimal set of light sources. Through the experiments using both synthetic and real images, we experimentally show the effectiveness of our proposed method and our setup with a programmable illumination and a polarization camera.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Illumination Planning for Measuring Per-Pixel Surface Roughness\",\"authors\":\"Kota Arieda, Takahiro Okabe\",\"doi\":\"10.23919/MVA51890.2021.9511392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring per-pixel surface roughness is useful for machine vision applications such as visual inspection. The surface roughness can be recovered from specular reflection components, but a large number of images taken under different lighting and/or viewing directions is required in general so that sufficient specular reflection components are observed at each pixel. In this paper, we propose a robust and efficient method for per-pixel estimation of surface roughness. Specifically, we propose an illumination planning based on noise propagation analysis; it achieves the surface roughness estimation from a small number of images taken under the optimal set of light sources. Through the experiments using both synthetic and real images, we experimentally show the effectiveness of our proposed method and our setup with a programmable illumination and a polarization camera.\",\"PeriodicalId\":312481,\"journal\":{\"name\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA51890.2021.9511392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

测量每像素的表面粗糙度对于视觉检测等机器视觉应用非常有用。表面粗糙度可以从镜面反射分量中恢复,但通常需要在不同光照和/或观看方向下拍摄大量图像,以便在每个像素处观察到足够的镜面反射分量。在本文中,我们提出了一种鲁棒且高效的表面粗糙度逐像素估计方法。具体来说,我们提出了一种基于噪声传播分析的照明规划;它通过在最优光源组下拍摄的少量图像来实现表面粗糙度估计。通过合成图像和真实图像的实验,我们通过可编程照明和偏振相机的设置实验证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Illumination Planning for Measuring Per-Pixel Surface Roughness
Measuring per-pixel surface roughness is useful for machine vision applications such as visual inspection. The surface roughness can be recovered from specular reflection components, but a large number of images taken under different lighting and/or viewing directions is required in general so that sufficient specular reflection components are observed at each pixel. In this paper, we propose a robust and efficient method for per-pixel estimation of surface roughness. Specifically, we propose an illumination planning based on noise propagation analysis; it achieves the surface roughness estimation from a small number of images taken under the optimal set of light sources. Through the experiments using both synthetic and real images, we experimentally show the effectiveness of our proposed method and our setup with a programmable illumination and a polarization camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信