{"title":"静息状态脑网络的层次挖掘:多尺度结构中代表性簇的选择","authors":"Pierre Bellec","doi":"10.1109/PRNI.2013.23","DOIUrl":null,"url":null,"abstract":"The hierarchical organization of brain networks can be captured by clustering time series using multiple numbers of clusters, or scales, in resting-state functional magnetic resonance imaging. However, the systematic examination of all scales is a tedious task. Here, I propose a method to select a limited number of scales that are representative of the full hierarchy. A bootstrap analysis is first performed to estimate stability matrices, which quantify the reliability of the clustering for every pair of brain regions, over a grid of possible scales. A subset of scales is then selected to approximate linearly all stability matrices with a specified level of accuracy. On real data, the method was found to select a relatively small (~7) number of scales to explain 95% of the energy of 73 scales ranging from 2 to 1100 clusters. The number of selected scales was very consistent across 43 subjects, and the actual scales also showed some good level of agreement. This approach thus provides a principled approach to mine hierarchical brain networks, in the form of a few scales amenable to detailed examination.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Mining the Hierarchy of Resting-State Brain Networks: Selection of Representative Clusters in a Multiscale Structure\",\"authors\":\"Pierre Bellec\",\"doi\":\"10.1109/PRNI.2013.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hierarchical organization of brain networks can be captured by clustering time series using multiple numbers of clusters, or scales, in resting-state functional magnetic resonance imaging. However, the systematic examination of all scales is a tedious task. Here, I propose a method to select a limited number of scales that are representative of the full hierarchy. A bootstrap analysis is first performed to estimate stability matrices, which quantify the reliability of the clustering for every pair of brain regions, over a grid of possible scales. A subset of scales is then selected to approximate linearly all stability matrices with a specified level of accuracy. On real data, the method was found to select a relatively small (~7) number of scales to explain 95% of the energy of 73 scales ranging from 2 to 1100 clusters. The number of selected scales was very consistent across 43 subjects, and the actual scales also showed some good level of agreement. This approach thus provides a principled approach to mine hierarchical brain networks, in the form of a few scales amenable to detailed examination.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining the Hierarchy of Resting-State Brain Networks: Selection of Representative Clusters in a Multiscale Structure
The hierarchical organization of brain networks can be captured by clustering time series using multiple numbers of clusters, or scales, in resting-state functional magnetic resonance imaging. However, the systematic examination of all scales is a tedious task. Here, I propose a method to select a limited number of scales that are representative of the full hierarchy. A bootstrap analysis is first performed to estimate stability matrices, which quantify the reliability of the clustering for every pair of brain regions, over a grid of possible scales. A subset of scales is then selected to approximate linearly all stability matrices with a specified level of accuracy. On real data, the method was found to select a relatively small (~7) number of scales to explain 95% of the energy of 73 scales ranging from 2 to 1100 clusters. The number of selected scales was very consistent across 43 subjects, and the actual scales also showed some good level of agreement. This approach thus provides a principled approach to mine hierarchical brain networks, in the form of a few scales amenable to detailed examination.