Chong Liu, Huaguang Zhang, Xianshuang Yao, Kun Zhang
{"title":"双储层回声状态网络用于时间序列预测","authors":"Chong Liu, Huaguang Zhang, Xianshuang Yao, Kun Zhang","doi":"10.1109/ICICIP.2016.7885901","DOIUrl":null,"url":null,"abstract":"In this paper, a novel model, named double-reservoir echo state networks (DR-ESN), is proposed. DR-ESN is constructed by two reservoirs which are connected in series, thus the performance of abstracting the characteristics from the prediction task is improved. A sufficient condition is provided to ensure the stability of DR-ESN. The batch gradient method and ridge regression method are utilized to optimize the six parameters of DR-ESN and train the readouts, respectively. DR-ESN is verified by two different experiments, chaotic time series prediction and real-valued function time series prediction. The simulation results demonstrates that DR-ESN has a more precise result than leaky-ESN in predicting the time series.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Echo state networks with double-reservoir for time-series prediction\",\"authors\":\"Chong Liu, Huaguang Zhang, Xianshuang Yao, Kun Zhang\",\"doi\":\"10.1109/ICICIP.2016.7885901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel model, named double-reservoir echo state networks (DR-ESN), is proposed. DR-ESN is constructed by two reservoirs which are connected in series, thus the performance of abstracting the characteristics from the prediction task is improved. A sufficient condition is provided to ensure the stability of DR-ESN. The batch gradient method and ridge regression method are utilized to optimize the six parameters of DR-ESN and train the readouts, respectively. DR-ESN is verified by two different experiments, chaotic time series prediction and real-valued function time series prediction. The simulation results demonstrates that DR-ESN has a more precise result than leaky-ESN in predicting the time series.\",\"PeriodicalId\":226381,\"journal\":{\"name\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2016.7885901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Echo state networks with double-reservoir for time-series prediction
In this paper, a novel model, named double-reservoir echo state networks (DR-ESN), is proposed. DR-ESN is constructed by two reservoirs which are connected in series, thus the performance of abstracting the characteristics from the prediction task is improved. A sufficient condition is provided to ensure the stability of DR-ESN. The batch gradient method and ridge regression method are utilized to optimize the six parameters of DR-ESN and train the readouts, respectively. DR-ESN is verified by two different experiments, chaotic time series prediction and real-valued function time series prediction. The simulation results demonstrates that DR-ESN has a more precise result than leaky-ESN in predicting the time series.