Hong-Lae Kim, Jangseop Han, Sang-Myun Lee, Hong-Bum Kwon, Jungho Hwang, Yong-Jun Kim
{"title":"采用mems粒子处理芯片的超细粒子计数器","authors":"Hong-Lae Kim, Jangseop Han, Sang-Myun Lee, Hong-Bum Kwon, Jungho Hwang, Yong-Jun Kim","doi":"10.1109/MEMSYS.2015.7051016","DOIUrl":null,"url":null,"abstract":"This paper reports on the full realization of an ultrafine particle monitoring system, including a MEMS-based particle processing chip and signal processing circuits. Unlike a conventional liquid-based microfluidic chip, the proposed particle processing chip handles a mixture of gas and particles. The proposed particle monitoring system is suitable for routine ambient air monitoring due to its small size, ease of use and low cost. The detection performance of the proposed system was evaluated through measurements of particle number concentration and compared with that of commercial instrument.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Ultrafine particle counter using a MEMS-based particle processing chip\",\"authors\":\"Hong-Lae Kim, Jangseop Han, Sang-Myun Lee, Hong-Bum Kwon, Jungho Hwang, Yong-Jun Kim\",\"doi\":\"10.1109/MEMSYS.2015.7051016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the full realization of an ultrafine particle monitoring system, including a MEMS-based particle processing chip and signal processing circuits. Unlike a conventional liquid-based microfluidic chip, the proposed particle processing chip handles a mixture of gas and particles. The proposed particle monitoring system is suitable for routine ambient air monitoring due to its small size, ease of use and low cost. The detection performance of the proposed system was evaluated through measurements of particle number concentration and compared with that of commercial instrument.\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2015.7051016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrafine particle counter using a MEMS-based particle processing chip
This paper reports on the full realization of an ultrafine particle monitoring system, including a MEMS-based particle processing chip and signal processing circuits. Unlike a conventional liquid-based microfluidic chip, the proposed particle processing chip handles a mixture of gas and particles. The proposed particle monitoring system is suitable for routine ambient air monitoring due to its small size, ease of use and low cost. The detection performance of the proposed system was evaluated through measurements of particle number concentration and compared with that of commercial instrument.