虚拟化服务器的资源预测模型

Sayanta Mallick, Gaétan Hains, C. Deme
{"title":"虚拟化服务器的资源预测模型","authors":"Sayanta Mallick, Gaétan Hains, C. Deme","doi":"10.1109/HPCSim.2012.6266990","DOIUrl":null,"url":null,"abstract":"Monitoring and predicting resource consumption is a fundamental need when running a virtualized system. Predicting resources is necessary because cloud infrastructures use virtual resources on demand. Current monitoring tools are insufficient to predict resource usage of virtualized systems so, without proper monitoring, virtualized systems can suffer down time, which can directly affect cloud infrastructure. We propose a new modelling approach to the problem of resource prediction. Models are based on historical data to forecast short-term resource usages. We present here in detail three of our prediction models to forecast and monitor resources. We also show experimental results by using real-life data and an overall evaluation of this approach.","PeriodicalId":428764,"journal":{"name":"2012 International Conference on High Performance Computing & Simulation (HPCS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A resource prediction model for virtualization servers\",\"authors\":\"Sayanta Mallick, Gaétan Hains, C. Deme\",\"doi\":\"10.1109/HPCSim.2012.6266990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring and predicting resource consumption is a fundamental need when running a virtualized system. Predicting resources is necessary because cloud infrastructures use virtual resources on demand. Current monitoring tools are insufficient to predict resource usage of virtualized systems so, without proper monitoring, virtualized systems can suffer down time, which can directly affect cloud infrastructure. We propose a new modelling approach to the problem of resource prediction. Models are based on historical data to forecast short-term resource usages. We present here in detail three of our prediction models to forecast and monitor resources. We also show experimental results by using real-life data and an overall evaluation of this approach.\",\"PeriodicalId\":428764,\"journal\":{\"name\":\"2012 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2012.6266990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2012.6266990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

监控和预测资源消耗是运行虚拟化系统时的基本需求。预测资源是必要的,因为云基础设施按需使用虚拟资源。当前的监控工具不足以预测虚拟化系统的资源使用情况,因此,如果没有适当的监控,虚拟化系统可能会出现停机,从而直接影响云基础设施。针对资源预测问题,提出了一种新的建模方法。模型基于历史数据来预测短期的资源使用情况。我们在这里详细介绍我们的三个预测模型来预测和监测资源。我们还通过使用实际数据和对该方法的总体评估来展示实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A resource prediction model for virtualization servers
Monitoring and predicting resource consumption is a fundamental need when running a virtualized system. Predicting resources is necessary because cloud infrastructures use virtual resources on demand. Current monitoring tools are insufficient to predict resource usage of virtualized systems so, without proper monitoring, virtualized systems can suffer down time, which can directly affect cloud infrastructure. We propose a new modelling approach to the problem of resource prediction. Models are based on historical data to forecast short-term resource usages. We present here in detail three of our prediction models to forecast and monitor resources. We also show experimental results by using real-life data and an overall evaluation of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信