激活函数对深度图像先验性能的比较

Shohei Fujii, H. Hayashi
{"title":"激活函数对深度图像先验性能的比较","authors":"Shohei Fujii, H. Hayashi","doi":"10.1109/ICAIIC.2019.8669063","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the performance of activation functions on a deep image prior. The activation functions considered here are the standard rectified linear unit (ReLU), leaky rectified linear unit (Leaky ReLU), and the randomized leaky rectified linear unit (RReLU). We use these functions for denoising, super-resolution, and inpainting of the deep image prior. Our aim is to observe the effect of differences in the activation functions.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of Performance by Activation Functions on Deep Image Prior\",\"authors\":\"Shohei Fujii, H. Hayashi\",\"doi\":\"10.1109/ICAIIC.2019.8669063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we compare the performance of activation functions on a deep image prior. The activation functions considered here are the standard rectified linear unit (ReLU), leaky rectified linear unit (Leaky ReLU), and the randomized leaky rectified linear unit (RReLU). We use these functions for denoising, super-resolution, and inpainting of the deep image prior. Our aim is to observe the effect of differences in the activation functions.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8669063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们比较了激活函数在深度图像先验上的性能。这里考虑的激活函数是标准整流线性单元(ReLU),泄漏整流线性单元(leaky ReLU)和随机泄漏整流线性单元(RReLU)。我们使用这些函数对深度图像进行去噪、超分辨率和先验的图像修复。我们的目的是观察激活函数差异的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Performance by Activation Functions on Deep Image Prior
In this paper, we compare the performance of activation functions on a deep image prior. The activation functions considered here are the standard rectified linear unit (ReLU), leaky rectified linear unit (Leaky ReLU), and the randomized leaky rectified linear unit (RReLU). We use these functions for denoising, super-resolution, and inpainting of the deep image prior. Our aim is to observe the effect of differences in the activation functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信