一种射频电路中变压器参数自动提取及可扩展建模方法

Jian Yao, Zuochang Ye, Yan Wang
{"title":"一种射频电路中变压器参数自动提取及可扩展建模方法","authors":"Jian Yao, Zuochang Ye, Yan Wang","doi":"10.1109/RFIC.2013.6569521","DOIUrl":null,"url":null,"abstract":"Summary form only given. In this paper, an automatic parameter extraction and scalable modeling method for transformer with 2π-based equivalent circuit-topology is established for the first time. In contrast to traditional optimization extraction, the adaptive boundary compression technique, combining a new correlated parameter extraction method with the neighboring geometry parameters, is introduced. The method is validated by 42 industry transformers and both accuracy and scalability have been achieved.","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An automatic parameter extraction and scalable modeling method for transformers in RF circuit\",\"authors\":\"Jian Yao, Zuochang Ye, Yan Wang\",\"doi\":\"10.1109/RFIC.2013.6569521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. In this paper, an automatic parameter extraction and scalable modeling method for transformer with 2π-based equivalent circuit-topology is established for the first time. In contrast to traditional optimization extraction, the adaptive boundary compression technique, combining a new correlated parameter extraction method with the neighboring geometry parameters, is introduced. The method is validated by 42 industry transformers and both accuracy and scalability have been achieved.\",\"PeriodicalId\":203521,\"journal\":{\"name\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2013.6569521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

只提供摘要形式。本文首次建立了一种基于2π等效电路拓扑的变压器参数自动提取和可扩展建模方法。针对传统的优化提取方法,提出了一种结合相邻几何参数的相关参数提取方法——自适应边界压缩技术。通过42台工业变压器的实验验证了该方法的准确性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automatic parameter extraction and scalable modeling method for transformers in RF circuit
Summary form only given. In this paper, an automatic parameter extraction and scalable modeling method for transformer with 2π-based equivalent circuit-topology is established for the first time. In contrast to traditional optimization extraction, the adaptive boundary compression technique, combining a new correlated parameter extraction method with the neighboring geometry parameters, is introduced. The method is validated by 42 industry transformers and both accuracy and scalability have been achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信