基于加权最小二乘法的基函数个数选择,实现了人体监测测量数据的融合

P. Mazurek, Jakub Wagner, R. Morawski
{"title":"基于加权最小二乘法的基函数个数选择,实现了人体监测测量数据的融合","authors":"P. Mazurek, Jakub Wagner, R. Morawski","doi":"10.1109/I2MTC.2019.8827046","DOIUrl":null,"url":null,"abstract":"The research reported in this paper is related to the fusion of measurement data from the impulse-radar sensors and infrared depth sensors applied in a system for unobtrusive monitoring of elderly persons. The investigated method of data fusion consists in the approximation of a sequence of measured data by means of a linear combination of linearly independent basis functions, while the parameters of the approximation are determined using a weighted least-squares estimator. The proposed method is provided with the automatic determination of the number of basis functions by means of the so-called Stein’s unbiased risk estimator. Results of the numerical experimentation–performed on both synthetic data and real-world data-show that the proposed approach allows for robust estimation of the monitored person’s position regardless of the trajectory shape and person’s walking velocity.","PeriodicalId":132588,"journal":{"name":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Choosing number of basis functions in weighted least-squares method for fusion of measurement data used for persons’ monitoring\",\"authors\":\"P. Mazurek, Jakub Wagner, R. Morawski\",\"doi\":\"10.1109/I2MTC.2019.8827046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research reported in this paper is related to the fusion of measurement data from the impulse-radar sensors and infrared depth sensors applied in a system for unobtrusive monitoring of elderly persons. The investigated method of data fusion consists in the approximation of a sequence of measured data by means of a linear combination of linearly independent basis functions, while the parameters of the approximation are determined using a weighted least-squares estimator. The proposed method is provided with the automatic determination of the number of basis functions by means of the so-called Stein’s unbiased risk estimator. Results of the numerical experimentation–performed on both synthetic data and real-world data-show that the proposed approach allows for robust estimation of the monitored person’s position regardless of the trajectory shape and person’s walking velocity.\",\"PeriodicalId\":132588,\"journal\":{\"name\":\"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2019.8827046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2019.8827046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究的是脉冲雷达传感器和红外深度传感器测量数据的融合,并将其应用于老年人无干扰监测系统中。所研究的数据融合方法是通过线性无关基函数的线性组合对一系列测量数据进行逼近,并使用加权最小二乘估计确定逼近的参数。该方法通过所谓的Stein无偏风险估计量自动确定基函数的个数。在合成数据和真实世界数据上进行的数值实验结果表明,所提出的方法允许对被监测人员的位置进行鲁棒估计,而不考虑轨迹形状和人的行走速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choosing number of basis functions in weighted least-squares method for fusion of measurement data used for persons’ monitoring
The research reported in this paper is related to the fusion of measurement data from the impulse-radar sensors and infrared depth sensors applied in a system for unobtrusive monitoring of elderly persons. The investigated method of data fusion consists in the approximation of a sequence of measured data by means of a linear combination of linearly independent basis functions, while the parameters of the approximation are determined using a weighted least-squares estimator. The proposed method is provided with the automatic determination of the number of basis functions by means of the so-called Stein’s unbiased risk estimator. Results of the numerical experimentation–performed on both synthetic data and real-world data-show that the proposed approach allows for robust estimation of the monitored person’s position regardless of the trajectory shape and person’s walking velocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信