HiBsteR:用于图像检索的分层增强深度度量学习

Georg Waltner, M. Opitz, Horst Possegger, H. Bischof
{"title":"HiBsteR:用于图像检索的分层增强深度度量学习","authors":"Georg Waltner, M. Opitz, Horst Possegger, H. Bischof","doi":"10.1109/WACV.2019.00069","DOIUrl":null,"url":null,"abstract":"When the number of categories is growing into thousands, large-scale image retrieval becomes an increasingly hard task. Retrieval accuracy can be improved by learning distance metric methods that separate categories in a transformed embedding space. Unlike most methods that utilize a single embedding to learn a distance metric, we build on the idea of boosted metric learning, where an embedding is split into a boosted ensemble of embeddings. While in general metric learning is directly applied on fine labels to learn embeddings, we take this one step further and incorporate hierarchical label information into the boosting framework and show how to properly adapt loss functions for this purpose. We show that by introducing several sub-embeddings which focus on specific hierarchical classes, the retrieval accuracy can be improved compared to standard flat label embeddings. The proposed method is especially suitable for exploiting hierarchical datasets or when additional labels can be retrieved without much effort. Our approach improves R@1 over state-of-the-art methods on the biggest available retrieval dataset (Stanford Online Products) and sets new reference baselines for hierarchical metric learning on several other datasets (CUB-200-2011, VegFru, FruitVeg-81). We show that the clustering quality in terms of NMI score is superior to previous works.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HiBsteR: Hierarchical Boosted Deep Metric Learning for Image Retrieval\",\"authors\":\"Georg Waltner, M. Opitz, Horst Possegger, H. Bischof\",\"doi\":\"10.1109/WACV.2019.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the number of categories is growing into thousands, large-scale image retrieval becomes an increasingly hard task. Retrieval accuracy can be improved by learning distance metric methods that separate categories in a transformed embedding space. Unlike most methods that utilize a single embedding to learn a distance metric, we build on the idea of boosted metric learning, where an embedding is split into a boosted ensemble of embeddings. While in general metric learning is directly applied on fine labels to learn embeddings, we take this one step further and incorporate hierarchical label information into the boosting framework and show how to properly adapt loss functions for this purpose. We show that by introducing several sub-embeddings which focus on specific hierarchical classes, the retrieval accuracy can be improved compared to standard flat label embeddings. The proposed method is especially suitable for exploiting hierarchical datasets or when additional labels can be retrieved without much effort. Our approach improves R@1 over state-of-the-art methods on the biggest available retrieval dataset (Stanford Online Products) and sets new reference baselines for hierarchical metric learning on several other datasets (CUB-200-2011, VegFru, FruitVeg-81). We show that the clustering quality in terms of NMI score is superior to previous works.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当分类数量增加到数千个时,大规模图像检索成为一项越来越困难的任务。通过学习在转换后的嵌入空间中分离类别的距离度量方法,可以提高检索精度。与大多数利用单个嵌入来学习距离度量的方法不同,我们建立在增强度量学习的思想之上,其中嵌入被分割成一个增强的嵌入集合。虽然通常度量学习直接应用于精细标签来学习嵌入,但我们更进一步,将分层标签信息合并到增强框架中,并展示了如何为此目的适当地调整损失函数。研究表明,与标准平面标签嵌入相比,通过引入几个专注于特定层次类的子嵌入可以提高检索精度。所提出的方法特别适用于利用分层数据集或当额外的标签可以不费力地检索时。我们的方法在最大的可用检索数据集(斯坦福在线产品)上改进了R@1,并为其他几个数据集(CUB-200-2011, VegFru, FruitVeg-81)上的分层度量学习设置了新的参考基线。我们表明,在NMI得分方面的聚类质量优于以往的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HiBsteR: Hierarchical Boosted Deep Metric Learning for Image Retrieval
When the number of categories is growing into thousands, large-scale image retrieval becomes an increasingly hard task. Retrieval accuracy can be improved by learning distance metric methods that separate categories in a transformed embedding space. Unlike most methods that utilize a single embedding to learn a distance metric, we build on the idea of boosted metric learning, where an embedding is split into a boosted ensemble of embeddings. While in general metric learning is directly applied on fine labels to learn embeddings, we take this one step further and incorporate hierarchical label information into the boosting framework and show how to properly adapt loss functions for this purpose. We show that by introducing several sub-embeddings which focus on specific hierarchical classes, the retrieval accuracy can be improved compared to standard flat label embeddings. The proposed method is especially suitable for exploiting hierarchical datasets or when additional labels can be retrieved without much effort. Our approach improves R@1 over state-of-the-art methods on the biggest available retrieval dataset (Stanford Online Products) and sets new reference baselines for hierarchical metric learning on several other datasets (CUB-200-2011, VegFru, FruitVeg-81). We show that the clustering quality in terms of NMI score is superior to previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信