一类三阶系统的Aizerman猜想的验证

A. Bergen, I. Williams
{"title":"一类三阶系统的Aizerman猜想的验证","authors":"A. Bergen, I. Williams","doi":"10.1109/TAC.1962.1105447","DOIUrl":null,"url":null,"abstract":"The second method of Lyapunov is used to validate Aizerman's conjecture for the class of third-order nonlinear control systems described by the following differential equation: \\tdot{e} + a_{2}\\ddot{e} + a_{1}\\dot{e} + a_{0}e + f(e)=0 In this case, the stability of the nonlinear system may be inferred by considering an associated linear system in which the nonlinear function f(e) is replaced by ke . If the linear system is asymptotically stable for k_{1} , then the nonlinear system will be asymptotically stable in-the-large for any f(e) for which k_{1} The Lyapunov function used to prove this result is determined in a straightforward manner by considering the physical behavior of the system at the extreme points of the allowable range of k .","PeriodicalId":226447,"journal":{"name":"Ire Transactions on Automatic Control","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1962-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Verification of Aizerman's conjecture for a class of third-order systems\",\"authors\":\"A. Bergen, I. Williams\",\"doi\":\"10.1109/TAC.1962.1105447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The second method of Lyapunov is used to validate Aizerman's conjecture for the class of third-order nonlinear control systems described by the following differential equation: \\\\tdot{e} + a_{2}\\\\ddot{e} + a_{1}\\\\dot{e} + a_{0}e + f(e)=0 In this case, the stability of the nonlinear system may be inferred by considering an associated linear system in which the nonlinear function f(e) is replaced by ke . If the linear system is asymptotically stable for k_{1} , then the nonlinear system will be asymptotically stable in-the-large for any f(e) for which k_{1} The Lyapunov function used to prove this result is determined in a straightforward manner by considering the physical behavior of the system at the extreme points of the allowable range of k .\",\"PeriodicalId\":226447,\"journal\":{\"name\":\"Ire Transactions on Automatic Control\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1962-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ire Transactions on Automatic Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAC.1962.1105447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ire Transactions on Automatic Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAC.1962.1105447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

利用Lyapunov的第二种方法验证了一类三阶非线性控制系统的Aizerman猜想:\tdot{e} + {a_2}\ddot{e} + {a_1}\dot{e} + {a_0e} + f(e)=0。在这种情况下,可以通过考虑将非线性函数f(e)替换为ke的相关线性系统来推断非线性系统的稳定性。如果线性系统对于{k_1}是渐近稳定的,那么非线性系统对于任意f(e)对于{k_1}都是渐近稳定的。用来证明这一结果的Lyapunov函数通过考虑系统在k允许范围极值点处的物理行为以一种直接的方式确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of Aizerman's conjecture for a class of third-order systems
The second method of Lyapunov is used to validate Aizerman's conjecture for the class of third-order nonlinear control systems described by the following differential equation: \tdot{e} + a_{2}\ddot{e} + a_{1}\dot{e} + a_{0}e + f(e)=0 In this case, the stability of the nonlinear system may be inferred by considering an associated linear system in which the nonlinear function f(e) is replaced by ke . If the linear system is asymptotically stable for k_{1} , then the nonlinear system will be asymptotically stable in-the-large for any f(e) for which k_{1} The Lyapunov function used to prove this result is determined in a straightforward manner by considering the physical behavior of the system at the extreme points of the allowable range of k .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信