通过资源自适应批处理虚拟机提高服务器利用率:海报

S. A. Javadi, Piyush Shyam Banginwar, Vaishali Chanana, Rashmi Narvekar, Mitesh Kumar Savita, Anshul Gandhi
{"title":"通过资源自适应批处理虚拟机提高服务器利用率:海报","authors":"S. A. Javadi, Piyush Shyam Banginwar, Vaishali Chanana, Rashmi Narvekar, Mitesh Kumar Savita, Anshul Gandhi","doi":"10.1145/3155016.3155025","DOIUrl":null,"url":null,"abstract":"Public cloud data centers often suffer from low resource utilization [1]. To increase utilization, recent works have proposed running batch workloads next to customer VMs to leverage idle resources [6]. While effective, the key challenge here is interference - the performance degradation of the colocated customer VMs due to resource contention with batch workload VMs at the underlying host server [5].","PeriodicalId":201544,"journal":{"name":"Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving server utilization via resource-adaptive batch VMs: poster\",\"authors\":\"S. A. Javadi, Piyush Shyam Banginwar, Vaishali Chanana, Rashmi Narvekar, Mitesh Kumar Savita, Anshul Gandhi\",\"doi\":\"10.1145/3155016.3155025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Public cloud data centers often suffer from low resource utilization [1]. To increase utilization, recent works have proposed running batch workloads next to customer VMs to leverage idle resources [6]. While effective, the key challenge here is interference - the performance degradation of the colocated customer VMs due to resource contention with batch workload VMs at the underlying host server [5].\",\"PeriodicalId\":201544,\"journal\":{\"name\":\"Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3155016.3155025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3155016.3155025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

公有云数据中心往往存在资源利用率低的问题[1]。为了提高利用率,最近的研究提出在客户vm旁边运行批处理工作负载以利用空闲资源[6]。虽然有效,但这里的关键挑战是干扰——由于与底层主机服务器上的批处理工作负载虚拟机的资源争用,并置的客户虚拟机的性能下降[5]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving server utilization via resource-adaptive batch VMs: poster
Public cloud data centers often suffer from low resource utilization [1]. To increase utilization, recent works have proposed running batch workloads next to customer VMs to leverage idle resources [6]. While effective, the key challenge here is interference - the performance degradation of the colocated customer VMs due to resource contention with batch workload VMs at the underlying host server [5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信