高速共享基数4除法和基数4平方根算法

J. Fandrianto
{"title":"高速共享基数4除法和基数4平方根算法","authors":"J. Fandrianto","doi":"10.1109/ARITH.1987.6158696","DOIUrl":null,"url":null,"abstract":"An algorithm to implement radix four division and radix four square-root in a shared hardware for IEEE standard for binary floating point format will be described. The algorithm is best suited to be implemented in either off-the-shelf components or being a portion of a VLSI floating-point chip. Division and square-root bits are generated by a non-restoring method while keeping the partial remainder, partial radicand, quotient and root all in redundant forms. The core iteration involves a 8-bit carry look-ahead adder, a multiplexer to convert two's complement to sign magnitude, a 19-term next quotient/root prediction PLA, a divisor/root multiple selector, and a carry save adder. At the end, two iterations of carry look-ahead adder across the length of the mantissa are required to generate the quotient/root in a correctly rounded form. Despite its simplicity in the hardware requirement, the algorithm takes only about 30 cycles to compute double precision division or square-root. Finally, extending the algorithm to radix eight or higher division/square-root will be discussed.","PeriodicalId":424620,"journal":{"name":"1987 IEEE 8th Symposium on Computer Arithmetic (ARITH)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Algorithm for high speed shared radix 4 division and radix 4 square-root\",\"authors\":\"J. Fandrianto\",\"doi\":\"10.1109/ARITH.1987.6158696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm to implement radix four division and radix four square-root in a shared hardware for IEEE standard for binary floating point format will be described. The algorithm is best suited to be implemented in either off-the-shelf components or being a portion of a VLSI floating-point chip. Division and square-root bits are generated by a non-restoring method while keeping the partial remainder, partial radicand, quotient and root all in redundant forms. The core iteration involves a 8-bit carry look-ahead adder, a multiplexer to convert two's complement to sign magnitude, a 19-term next quotient/root prediction PLA, a divisor/root multiple selector, and a carry save adder. At the end, two iterations of carry look-ahead adder across the length of the mantissa are required to generate the quotient/root in a correctly rounded form. Despite its simplicity in the hardware requirement, the algorithm takes only about 30 cycles to compute double precision division or square-root. Finally, extending the algorithm to radix eight or higher division/square-root will be discussed.\",\"PeriodicalId\":424620,\"journal\":{\"name\":\"1987 IEEE 8th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1987 IEEE 8th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1987.6158696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1987 IEEE 8th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1987.6158696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

本文描述了一种在IEEE二进制浮点格式标准的共享硬件上实现基数四除法和基数四平方根的算法。该算法最适合在现成组件或VLSI浮点芯片的一部分中实现。除法位和平方根位通过非还原方法生成,同时保持部分余数、部分根数、商和根都是冗余形式。核心迭代包括一个8位进位预判加法器,一个将两个补码转换为符号幅度的多路复用器,一个19项下商/根预测PLA,一个除数/根多重选择器和一个进位保存加法器。最后,需要在尾数长度上进行两次进位预判加法器迭代,以正确的四舍五入形式生成商/根。尽管硬件要求简单,但该算法只需30个周期即可计算双精度除法或平方根。最后,将该算法扩展到基数为8或更高的除法/平方根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm for high speed shared radix 4 division and radix 4 square-root
An algorithm to implement radix four division and radix four square-root in a shared hardware for IEEE standard for binary floating point format will be described. The algorithm is best suited to be implemented in either off-the-shelf components or being a portion of a VLSI floating-point chip. Division and square-root bits are generated by a non-restoring method while keeping the partial remainder, partial radicand, quotient and root all in redundant forms. The core iteration involves a 8-bit carry look-ahead adder, a multiplexer to convert two's complement to sign magnitude, a 19-term next quotient/root prediction PLA, a divisor/root multiple selector, and a carry save adder. At the end, two iterations of carry look-ahead adder across the length of the mantissa are required to generate the quotient/root in a correctly rounded form. Despite its simplicity in the hardware requirement, the algorithm takes only about 30 cycles to compute double precision division or square-root. Finally, extending the algorithm to radix eight or higher division/square-root will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信