基于学习概率运动原语库的软体机械臂人体演示再现

Paris Oikonomou, A. Dometios, M. Khamassi, C. Tzafestas
{"title":"基于学习概率运动原语库的软体机械臂人体演示再现","authors":"Paris Oikonomou, A. Dometios, M. Khamassi, C. Tzafestas","doi":"10.1109/icra46639.2022.9811627","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel technique that aims to control a two-module bio-inspired soft-robotic arm in order to qualitatively reproduce human demonstrations. The main idea behind the proposed methodology is based on the assumption that a complex trajectory can be derived from the composition and asynchronous activation of learned parameterizable simple movements constituting a knowledge base. The present work capitalises on recent research progress in Movement Primitive (MP) theory in order to initially build a library of Probabilistic MPs (ProMPs), and subsequently to compute on the fly their proper combination in the task space resulting in the requested trajectory. At the same time, a model learning method is assigned with the task to approximate the inverse kinematics, while a replanning procedure handles the sequential and/or parallel ProMPs' asynchronous activation. Taking advantage of the mapping at the primitive-level that the ProMP framework provides, the composition is transferred into the actuation space for execution. The proposed control architecture is experimentally evaluated on a real soft-robotic arm, where its capability to simplify the trajectory control task for robots of complex unmodeled dynamics is exhibited.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reproduction of Human Demonstrations with a Soft-Robotic Arm based on a Library of Learned Probabilistic Movement Primitives\",\"authors\":\"Paris Oikonomou, A. Dometios, M. Khamassi, C. Tzafestas\",\"doi\":\"10.1109/icra46639.2022.9811627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a novel technique that aims to control a two-module bio-inspired soft-robotic arm in order to qualitatively reproduce human demonstrations. The main idea behind the proposed methodology is based on the assumption that a complex trajectory can be derived from the composition and asynchronous activation of learned parameterizable simple movements constituting a knowledge base. The present work capitalises on recent research progress in Movement Primitive (MP) theory in order to initially build a library of Probabilistic MPs (ProMPs), and subsequently to compute on the fly their proper combination in the task space resulting in the requested trajectory. At the same time, a model learning method is assigned with the task to approximate the inverse kinematics, while a replanning procedure handles the sequential and/or parallel ProMPs' asynchronous activation. Taking advantage of the mapping at the primitive-level that the ProMP framework provides, the composition is transferred into the actuation space for execution. The proposed control architecture is experimentally evaluated on a real soft-robotic arm, where its capability to simplify the trajectory control task for robots of complex unmodeled dynamics is exhibited.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们介绍了一种新的技术,旨在控制一个双模块仿生软机械臂,以定性地再现人类演示。所提出的方法背后的主要思想是基于这样的假设:一个复杂的轨迹可以从组成知识库的学习的可参数化的简单运动的组合和异步激活中得到。目前的工作利用了运动原语(MP)理论的最新研究进展,以便初步建立一个概率MPs (ProMPs)库,并随后在飞行中计算它们在任务空间中的适当组合,从而产生所需的轨迹。同时,模型学习方法被赋予近似逆运动学的任务,而重新规划程序处理顺序和/或并行promp的异步激活。利用ProMP框架提供的基元级别的映射,组合被转移到执行的驱动空间中。在一个真实的软机械臂上对所提出的控制体系结构进行了实验评估,并展示了其简化复杂未建模动力学机器人轨迹控制任务的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reproduction of Human Demonstrations with a Soft-Robotic Arm based on a Library of Learned Probabilistic Movement Primitives
In this paper we introduce a novel technique that aims to control a two-module bio-inspired soft-robotic arm in order to qualitatively reproduce human demonstrations. The main idea behind the proposed methodology is based on the assumption that a complex trajectory can be derived from the composition and asynchronous activation of learned parameterizable simple movements constituting a knowledge base. The present work capitalises on recent research progress in Movement Primitive (MP) theory in order to initially build a library of Probabilistic MPs (ProMPs), and subsequently to compute on the fly their proper combination in the task space resulting in the requested trajectory. At the same time, a model learning method is assigned with the task to approximate the inverse kinematics, while a replanning procedure handles the sequential and/or parallel ProMPs' asynchronous activation. Taking advantage of the mapping at the primitive-level that the ProMP framework provides, the composition is transferred into the actuation space for execution. The proposed control architecture is experimentally evaluated on a real soft-robotic arm, where its capability to simplify the trajectory control task for robots of complex unmodeled dynamics is exhibited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信