Paris Oikonomou, A. Dometios, M. Khamassi, C. Tzafestas
{"title":"基于学习概率运动原语库的软体机械臂人体演示再现","authors":"Paris Oikonomou, A. Dometios, M. Khamassi, C. Tzafestas","doi":"10.1109/icra46639.2022.9811627","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel technique that aims to control a two-module bio-inspired soft-robotic arm in order to qualitatively reproduce human demonstrations. The main idea behind the proposed methodology is based on the assumption that a complex trajectory can be derived from the composition and asynchronous activation of learned parameterizable simple movements constituting a knowledge base. The present work capitalises on recent research progress in Movement Primitive (MP) theory in order to initially build a library of Probabilistic MPs (ProMPs), and subsequently to compute on the fly their proper combination in the task space resulting in the requested trajectory. At the same time, a model learning method is assigned with the task to approximate the inverse kinematics, while a replanning procedure handles the sequential and/or parallel ProMPs' asynchronous activation. Taking advantage of the mapping at the primitive-level that the ProMP framework provides, the composition is transferred into the actuation space for execution. The proposed control architecture is experimentally evaluated on a real soft-robotic arm, where its capability to simplify the trajectory control task for robots of complex unmodeled dynamics is exhibited.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reproduction of Human Demonstrations with a Soft-Robotic Arm based on a Library of Learned Probabilistic Movement Primitives\",\"authors\":\"Paris Oikonomou, A. Dometios, M. Khamassi, C. Tzafestas\",\"doi\":\"10.1109/icra46639.2022.9811627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a novel technique that aims to control a two-module bio-inspired soft-robotic arm in order to qualitatively reproduce human demonstrations. The main idea behind the proposed methodology is based on the assumption that a complex trajectory can be derived from the composition and asynchronous activation of learned parameterizable simple movements constituting a knowledge base. The present work capitalises on recent research progress in Movement Primitive (MP) theory in order to initially build a library of Probabilistic MPs (ProMPs), and subsequently to compute on the fly their proper combination in the task space resulting in the requested trajectory. At the same time, a model learning method is assigned with the task to approximate the inverse kinematics, while a replanning procedure handles the sequential and/or parallel ProMPs' asynchronous activation. Taking advantage of the mapping at the primitive-level that the ProMP framework provides, the composition is transferred into the actuation space for execution. The proposed control architecture is experimentally evaluated on a real soft-robotic arm, where its capability to simplify the trajectory control task for robots of complex unmodeled dynamics is exhibited.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reproduction of Human Demonstrations with a Soft-Robotic Arm based on a Library of Learned Probabilistic Movement Primitives
In this paper we introduce a novel technique that aims to control a two-module bio-inspired soft-robotic arm in order to qualitatively reproduce human demonstrations. The main idea behind the proposed methodology is based on the assumption that a complex trajectory can be derived from the composition and asynchronous activation of learned parameterizable simple movements constituting a knowledge base. The present work capitalises on recent research progress in Movement Primitive (MP) theory in order to initially build a library of Probabilistic MPs (ProMPs), and subsequently to compute on the fly their proper combination in the task space resulting in the requested trajectory. At the same time, a model learning method is assigned with the task to approximate the inverse kinematics, while a replanning procedure handles the sequential and/or parallel ProMPs' asynchronous activation. Taking advantage of the mapping at the primitive-level that the ProMP framework provides, the composition is transferred into the actuation space for execution. The proposed control architecture is experimentally evaluated on a real soft-robotic arm, where its capability to simplify the trajectory control task for robots of complex unmodeled dynamics is exhibited.