相变冻结热方程的最优边界控制

C. J. Backi, J. Gravdahl
{"title":"相变冻结热方程的最优边界控制","authors":"C. J. Backi, J. Gravdahl","doi":"10.1109/AUCC.2013.6697308","DOIUrl":null,"url":null,"abstract":"In this paper an approach for optimal boundary control of a parabolic partial differential equation (PDE) is presented. The parabolic PDE is the heat equation for thermal conduction. A technical application for this is the freezing of fish in a vertical plate freezer. As it is a dominant phenomenon in the process of freezing, the latent heat of fusion is included in the model. The aim of the optimization is to freeze the interior of a fish block below -18 °C in a predefined time horizon with an energy consumption that is as low as possible assuming that this corresponds to high freezing temperatures.","PeriodicalId":177490,"journal":{"name":"2013 Australian Control Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimal boundary control for the heat equation with application to freezing with phase change\",\"authors\":\"C. J. Backi, J. Gravdahl\",\"doi\":\"10.1109/AUCC.2013.6697308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an approach for optimal boundary control of a parabolic partial differential equation (PDE) is presented. The parabolic PDE is the heat equation for thermal conduction. A technical application for this is the freezing of fish in a vertical plate freezer. As it is a dominant phenomenon in the process of freezing, the latent heat of fusion is included in the model. The aim of the optimization is to freeze the interior of a fish block below -18 °C in a predefined time horizon with an energy consumption that is as low as possible assuming that this corresponds to high freezing temperatures.\",\"PeriodicalId\":177490,\"journal\":{\"name\":\"2013 Australian Control Conference\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Australian Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUCC.2013.6697308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australian Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUCC.2013.6697308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文给出了一类抛物型偏微分方程的最优边界控制方法。抛物型偏微分方程是热传导的热方程。这方面的一个技术应用是在垂直板冷冻机中冷冻鱼。由于融合潜热是冻结过程中的主导现象,所以模型中考虑了融合潜热。优化的目的是在预定义的时间范围内将鱼块的内部冻结在-18°C以下,并且假设这对应于高冷冻温度,则能耗尽可能低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal boundary control for the heat equation with application to freezing with phase change
In this paper an approach for optimal boundary control of a parabolic partial differential equation (PDE) is presented. The parabolic PDE is the heat equation for thermal conduction. A technical application for this is the freezing of fish in a vertical plate freezer. As it is a dominant phenomenon in the process of freezing, the latent heat of fusion is included in the model. The aim of the optimization is to freeze the interior of a fish block below -18 °C in a predefined time horizon with an energy consumption that is as low as possible assuming that this corresponds to high freezing temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信