基于神经进化方法的非线性多输入多输出系统辨识

Ahmad Jobran Al-Mahasneh, S. G. Anavatu, M. Garratt
{"title":"基于神经进化方法的非线性多输入多输出系统辨识","authors":"Ahmad Jobran Al-Mahasneh, S. G. Anavatu, M. Garratt","doi":"10.1109/ICACI.2017.7974512","DOIUrl":null,"url":null,"abstract":"This research focuses on studying the effect of using evolutionary algorithms in improving neural network capabilities in identification of non-linear multi-input and multi-output dynamic systems such as a quadcopter. In addition, comparison of the different neural network based approaches is carried out in order to reveal the variations among the different methods. The results show that using evolutionary algorithms in training a neural network enhanced the system identification accuracy. Furthermore, the results show that differential evolution neural networks have promising potential to be used in multi-input multi-output system identification.","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Nonlinear multi-input multi-output system identification using neuro-evolutionary methods for a quadcopter\",\"authors\":\"Ahmad Jobran Al-Mahasneh, S. G. Anavatu, M. Garratt\",\"doi\":\"10.1109/ICACI.2017.7974512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on studying the effect of using evolutionary algorithms in improving neural network capabilities in identification of non-linear multi-input and multi-output dynamic systems such as a quadcopter. In addition, comparison of the different neural network based approaches is carried out in order to reveal the variations among the different methods. The results show that using evolutionary algorithms in training a neural network enhanced the system identification accuracy. Furthermore, the results show that differential evolution neural networks have promising potential to be used in multi-input multi-output system identification.\",\"PeriodicalId\":260701,\"journal\":{\"name\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2017.7974512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本研究重点研究了利用进化算法提高神经网络识别非线性多输入多输出动态系统(如四轴飞行器)能力的效果。此外,还对不同的基于神经网络的方法进行了比较,以揭示不同方法之间的差异。结果表明,采用进化算法训练神经网络可以提高系统的识别精度。结果表明,差分进化神经网络在多输入多输出系统辨识中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear multi-input multi-output system identification using neuro-evolutionary methods for a quadcopter
This research focuses on studying the effect of using evolutionary algorithms in improving neural network capabilities in identification of non-linear multi-input and multi-output dynamic systems such as a quadcopter. In addition, comparison of the different neural network based approaches is carried out in order to reveal the variations among the different methods. The results show that using evolutionary algorithms in training a neural network enhanced the system identification accuracy. Furthermore, the results show that differential evolution neural networks have promising potential to be used in multi-input multi-output system identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信