跨高维观测域的统计联系

L. Hearne, D. Kelly, Avimanyou K. Vatsa, Wade Mayham, T. Kazic
{"title":"跨高维观测域的统计联系","authors":"L. Hearne, D. Kelly, Avimanyou K. Vatsa, Wade Mayham, T. Kazic","doi":"10.2498/iti.2013.0554","DOIUrl":null,"url":null,"abstract":"Many experimental sciences collect different kinds of high-dimensional data on the same experimental units. When comparing relationships among homogeneous regions in one high dimensional domain with regions in another high dimensional domain, the number of possible comparisons may be extremely large and their set complexity unknown. We outline procedures for identifying possible relationships among regions in two different high-dimensional domains. If the data are dense enough, then statistical measures of association can be estimated. These procedures can identify and measure the probability of inter-domain associations of mixed complexity.","PeriodicalId":262789,"journal":{"name":"Proceedings of the ITI 2013 35th International Conference on Information Technology Interfaces","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical linkage across high dimensional observational domains\",\"authors\":\"L. Hearne, D. Kelly, Avimanyou K. Vatsa, Wade Mayham, T. Kazic\",\"doi\":\"10.2498/iti.2013.0554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many experimental sciences collect different kinds of high-dimensional data on the same experimental units. When comparing relationships among homogeneous regions in one high dimensional domain with regions in another high dimensional domain, the number of possible comparisons may be extremely large and their set complexity unknown. We outline procedures for identifying possible relationships among regions in two different high-dimensional domains. If the data are dense enough, then statistical measures of association can be estimated. These procedures can identify and measure the probability of inter-domain associations of mixed complexity.\",\"PeriodicalId\":262789,\"journal\":{\"name\":\"Proceedings of the ITI 2013 35th International Conference on Information Technology Interfaces\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ITI 2013 35th International Conference on Information Technology Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2498/iti.2013.0554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ITI 2013 35th International Conference on Information Technology Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2498/iti.2013.0554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多实验科学在相同的实验装置上收集不同种类的高维数据。当比较一个高维域中的同质区域与另一个高维域中的区域之间的关系时,可能的比较次数非常多,并且它们的集合复杂度未知。我们概述了在两个不同的高维域中识别区域之间可能关系的程序。如果数据足够密集,则可以估计关联的统计度量。这些程序可以识别和度量混合复杂性域间关联的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical linkage across high dimensional observational domains
Many experimental sciences collect different kinds of high-dimensional data on the same experimental units. When comparing relationships among homogeneous regions in one high dimensional domain with regions in another high dimensional domain, the number of possible comparisons may be extremely large and their set complexity unknown. We outline procedures for identifying possible relationships among regions in two different high-dimensional domains. If the data are dense enough, then statistical measures of association can be estimated. These procedures can identify and measure the probability of inter-domain associations of mixed complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信