用于卫星图像特征检测的形态成分分析

I. Koren, J. Joseph
{"title":"用于卫星图像特征检测的形态成分分析","authors":"I. Koren, J. Joseph","doi":"10.1109/WARSD.2003.1295174","DOIUrl":null,"url":null,"abstract":"A new approach to cluster analysis is proposed, namely morphological component analysis (MCA), to enhance discrimination of features in multi-channel satellite images. The characterization of clusters, in this method, is morphological, unlike some of the classical cluster approaches in which the clusters are defined by their centers. By using the shape and orientation of the clusters, it is possible to define an affine transformation of the cluster space into a new one in which the selected clusters are orthogonal or better separated. Such an operation can be considered as supervised independent component analysis.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Morphological component analysis for feature detection in satellite images\",\"authors\":\"I. Koren, J. Joseph\",\"doi\":\"10.1109/WARSD.2003.1295174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach to cluster analysis is proposed, namely morphological component analysis (MCA), to enhance discrimination of features in multi-channel satellite images. The characterization of clusters, in this method, is morphological, unlike some of the classical cluster approaches in which the clusters are defined by their centers. By using the shape and orientation of the clusters, it is possible to define an affine transformation of the cluster space into a new one in which the selected clusters are orthogonal or better separated. Such an operation can be considered as supervised independent component analysis.\",\"PeriodicalId\":395735,\"journal\":{\"name\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WARSD.2003.1295174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高多通道卫星图像的特征识别能力,提出了一种新的聚类分析方法——形态成分分析(MCA)。在这种方法中,簇的表征是形态学的,不像一些经典的簇方法,其中簇是由它们的中心定义的。通过使用簇的形状和方向,可以将簇空间的仿射变换定义为一个新的簇空间,其中所选的簇是正交的或更好地分离。这样的操作可以看作是监督独立成分分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological component analysis for feature detection in satellite images
A new approach to cluster analysis is proposed, namely morphological component analysis (MCA), to enhance discrimination of features in multi-channel satellite images. The characterization of clusters, in this method, is morphological, unlike some of the classical cluster approaches in which the clusters are defined by their centers. By using the shape and orientation of the clusters, it is possible to define an affine transformation of the cluster space into a new one in which the selected clusters are orthogonal or better separated. Such an operation can be considered as supervised independent component analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信