使用时间序列模型比较每个人群的COVID-19活动性病例

S. Folorunso, J. B. Awotunde, O. Banjo, E. Ogundepo, N. Adeboye
{"title":"使用时间序列模型比较每个人群的COVID-19活动性病例","authors":"S. Folorunso, J. B. Awotunde, O. Banjo, E. Ogundepo, N. Adeboye","doi":"10.4018/ijehmc.20220701.oa6","DOIUrl":null,"url":null,"abstract":"This research explored the precision of diverse time-series models for COVID-19 epidemic detection in all the thirty-six different states and the Federal Capital Territory (FCT) in Nigeria with the maximum count of daily cumulative of confirmed, recovered and death cases as of 4 November 2020 of COVID-19 and populace of each state. A 14-multi step ahead forecast system for active coronavirus cases was built, analyzed and compared for six (6) different deep learning-stimulated and statistical time-series models using two openly accessible datasets. The results obtained showed that based on RMSE metric, ARIMA model obtained the best values for four of the states (0.002537, 0.001969.12E-058, 5.36E-05 values for Lagos, FCT, Edo and Delta states respectively). While no method is all-encompassing for predicting daily active coronavirus cases for different states in Nigeria, ARIMA model obtains the highest-ranking prediction performance and attained a good position results in other states.","PeriodicalId":375617,"journal":{"name":"Int. J. E Health Medical Commun.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Active COVID-19 Cases per Population Using Time-Series Models\",\"authors\":\"S. Folorunso, J. B. Awotunde, O. Banjo, E. Ogundepo, N. Adeboye\",\"doi\":\"10.4018/ijehmc.20220701.oa6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research explored the precision of diverse time-series models for COVID-19 epidemic detection in all the thirty-six different states and the Federal Capital Territory (FCT) in Nigeria with the maximum count of daily cumulative of confirmed, recovered and death cases as of 4 November 2020 of COVID-19 and populace of each state. A 14-multi step ahead forecast system for active coronavirus cases was built, analyzed and compared for six (6) different deep learning-stimulated and statistical time-series models using two openly accessible datasets. The results obtained showed that based on RMSE metric, ARIMA model obtained the best values for four of the states (0.002537, 0.001969.12E-058, 5.36E-05 values for Lagos, FCT, Edo and Delta states respectively). While no method is all-encompassing for predicting daily active coronavirus cases for different states in Nigeria, ARIMA model obtains the highest-ranking prediction performance and attained a good position results in other states.\",\"PeriodicalId\":375617,\"journal\":{\"name\":\"Int. J. E Health Medical Commun.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. E Health Medical Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijehmc.20220701.oa6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. E Health Medical Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijehmc.20220701.oa6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了尼日利亚所有36个不同州和联邦首都直辖区(FCT)检测COVID-19流行病的各种时间序列模型的精度,其中包括截至2020年11月4日的COVID-19确诊病例、康复病例和死亡病例的最大每日累积数以及每个州的人口。利用两个开放的数据集,构建了冠状病毒活动性病例的14步提前预测系统,并对6种不同的深度学习刺激和统计时间序列模型进行了分析和比较。结果表明,基于RMSE指标的ARIMA模型在4个州中获得了最佳值(拉各斯州、FCT州、江户州和三角洲州分别为0.002537、0.001969.12E-058、5.36E-05)。虽然没有一种方法可以全面预测尼日利亚不同州的每日活跃冠状病毒病例,但ARIMA模型获得了最高的预测性能,并在其他州获得了良好的位置结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Active COVID-19 Cases per Population Using Time-Series Models
This research explored the precision of diverse time-series models for COVID-19 epidemic detection in all the thirty-six different states and the Federal Capital Territory (FCT) in Nigeria with the maximum count of daily cumulative of confirmed, recovered and death cases as of 4 November 2020 of COVID-19 and populace of each state. A 14-multi step ahead forecast system for active coronavirus cases was built, analyzed and compared for six (6) different deep learning-stimulated and statistical time-series models using two openly accessible datasets. The results obtained showed that based on RMSE metric, ARIMA model obtained the best values for four of the states (0.002537, 0.001969.12E-058, 5.36E-05 values for Lagos, FCT, Edo and Delta states respectively). While no method is all-encompassing for predicting daily active coronavirus cases for different states in Nigeria, ARIMA model obtains the highest-ranking prediction performance and attained a good position results in other states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信