特征哈希对公平分类的影响

Ritik Dutta, Varun Gohil, Atishay Jain
{"title":"特征哈希对公平分类的影响","authors":"Ritik Dutta, Varun Gohil, Atishay Jain","doi":"10.1145/3371158.3371230","DOIUrl":null,"url":null,"abstract":"Learning new representations of data to reduce correlation with sensitive attributes is one method to tackle algorithmic bias. In this paper, we explore the possibility of using feature hashing as a method for learning new representations of data for fair classification. Using Difference of Equal Odds as our metric to measure fairness, we observe that using feature hashing on the Adult Dataset leads to 5.4x improvement in metric score while losing an accuracy of 6.1% compared to when the data is used as is.","PeriodicalId":360747,"journal":{"name":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Feature Hashing on Fair Classification\",\"authors\":\"Ritik Dutta, Varun Gohil, Atishay Jain\",\"doi\":\"10.1145/3371158.3371230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning new representations of data to reduce correlation with sensitive attributes is one method to tackle algorithmic bias. In this paper, we explore the possibility of using feature hashing as a method for learning new representations of data for fair classification. Using Difference of Equal Odds as our metric to measure fairness, we observe that using feature hashing on the Adult Dataset leads to 5.4x improvement in metric score while losing an accuracy of 6.1% compared to when the data is used as is.\",\"PeriodicalId\":360747,\"journal\":{\"name\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3371158.3371230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371158.3371230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

学习新的数据表示来减少与敏感属性的相关性是解决算法偏差的一种方法。在本文中,我们探索了使用特征哈希作为学习数据新表示的方法以进行公平分类的可能性。使用等几率差异作为衡量公平性的指标,我们观察到在成人数据集上使用特征哈希导致指标得分提高5.4倍,同时与数据原样使用时相比,准确性降低了6.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Feature Hashing on Fair Classification
Learning new representations of data to reduce correlation with sensitive attributes is one method to tackle algorithmic bias. In this paper, we explore the possibility of using feature hashing as a method for learning new representations of data for fair classification. Using Difference of Equal Odds as our metric to measure fairness, we observe that using feature hashing on the Adult Dataset leads to 5.4x improvement in metric score while losing an accuracy of 6.1% compared to when the data is used as is.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信