噪声信道的多模图像编码

S. Regunathan, K. Rose, S. Gadkari
{"title":"噪声信道的多模图像编码","authors":"S. Regunathan, K. Rose, S. Gadkari","doi":"10.1109/DCC.1997.581974","DOIUrl":null,"url":null,"abstract":"We attack the problem of robust and efficient image compression for transmission over noisy channels. To achieve the dual goals of high compression efficiency and low sensitivity to channel noise we introduce a multimode coding framework. Multimode coders are quasi-fixed length in nature, and allow optimization of the tradeoff between the compression capability of variable-length coding and the robustness to channel errors of fixed length coding. We apply our framework to develop multimode image coding (MIC) schemes for noisy channels, based on the adaptive DCT. The robustness of the proposed MIC is further enhanced by the incorporation of a channel protection scheme suitable for the constraints on complexity and delay. To demonstrate the power of the technique we develop two specific image coding algorithms optimized for the binary symmetric channel. The first, MIC1, incorporates channel optimized quantizers and the second, MIC2, uses rate compatible punctured convolutional codes within the multimode framework. Simulations demonstrate that the multimode coders obtain significant performance gains of up to 6 dB over conventional fixed length coding techniques.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multimode image coding for noisy channels\",\"authors\":\"S. Regunathan, K. Rose, S. Gadkari\",\"doi\":\"10.1109/DCC.1997.581974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We attack the problem of robust and efficient image compression for transmission over noisy channels. To achieve the dual goals of high compression efficiency and low sensitivity to channel noise we introduce a multimode coding framework. Multimode coders are quasi-fixed length in nature, and allow optimization of the tradeoff between the compression capability of variable-length coding and the robustness to channel errors of fixed length coding. We apply our framework to develop multimode image coding (MIC) schemes for noisy channels, based on the adaptive DCT. The robustness of the proposed MIC is further enhanced by the incorporation of a channel protection scheme suitable for the constraints on complexity and delay. To demonstrate the power of the technique we develop two specific image coding algorithms optimized for the binary symmetric channel. The first, MIC1, incorporates channel optimized quantizers and the second, MIC2, uses rate compatible punctured convolutional codes within the multimode framework. Simulations demonstrate that the multimode coders obtain significant performance gains of up to 6 dB over conventional fixed length coding techniques.\",\"PeriodicalId\":403990,\"journal\":{\"name\":\"Proceedings DCC '97. Data Compression Conference\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '97. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1997.581974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.581974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了在噪声信道上传输的鲁棒和高效图像压缩问题。为了实现高压缩效率和低信道噪声敏感性的双重目标,我们引入了一种多模编码框架。多模编码器本质上是准定长编码,可以在变长编码的压缩能力和定长编码对信道误差的鲁棒性之间进行优化权衡。我们将我们的框架应用于基于自适应DCT的噪声信道的多模图像编码(MIC)方案。通过引入适合于复杂性和延迟约束的信道保护方案,进一步增强了所提出的MIC的鲁棒性。为了展示该技术的强大功能,我们开发了两种针对二进制对称信道优化的特定图像编码算法。第一个MIC1集成了信道优化量化器,第二个MIC2在多模框架内使用速率兼容的穿孔卷积码。仿真表明,与传统的固定长度编码技术相比,多模编码器获得了高达6 dB的显著性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimode image coding for noisy channels
We attack the problem of robust and efficient image compression for transmission over noisy channels. To achieve the dual goals of high compression efficiency and low sensitivity to channel noise we introduce a multimode coding framework. Multimode coders are quasi-fixed length in nature, and allow optimization of the tradeoff between the compression capability of variable-length coding and the robustness to channel errors of fixed length coding. We apply our framework to develop multimode image coding (MIC) schemes for noisy channels, based on the adaptive DCT. The robustness of the proposed MIC is further enhanced by the incorporation of a channel protection scheme suitable for the constraints on complexity and delay. To demonstrate the power of the technique we develop two specific image coding algorithms optimized for the binary symmetric channel. The first, MIC1, incorporates channel optimized quantizers and the second, MIC2, uses rate compatible punctured convolutional codes within the multimode framework. Simulations demonstrate that the multimode coders obtain significant performance gains of up to 6 dB over conventional fixed length coding techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信