最小化平面上两组点的分离圆的数量

Jiaye Wang, Feng Sun, Wenping Wang, C. Miao, Caiming Zhang
{"title":"最小化平面上两组点的分离圆的数量","authors":"Jiaye Wang, Feng Sun, Wenping Wang, C. Miao, Caiming Zhang","doi":"10.1109/ISVD.2011.21","DOIUrl":null,"url":null,"abstract":"Given two sets of points $\\mathbb{R}$ and $\\mathbb{B}$ in the plane, we address the problem of finding a set of circles $\\mathbb{C} = \\{c_i, i= 1, 2, \\ldots, k\\}$, satisfying the condition that every point in $\\mathbb{R}$ is covered by at least one circle $c_i$ and each point in $\\mathbb{B}$ is not covered by any circle $c_i, i = 1, 2, \\ldots k$. We conjecture that to find such a set with the smallest $k$ is NP-complete. In this paper, we present an approximation algorithm for computing the set with minimal number of such circles. The algorithm finds also a lower bound of the smallest $k$.","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing the Number of Separating Circles for Two Sets of Points in the Plane\",\"authors\":\"Jiaye Wang, Feng Sun, Wenping Wang, C. Miao, Caiming Zhang\",\"doi\":\"10.1109/ISVD.2011.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two sets of points $\\\\mathbb{R}$ and $\\\\mathbb{B}$ in the plane, we address the problem of finding a set of circles $\\\\mathbb{C} = \\\\{c_i, i= 1, 2, \\\\ldots, k\\\\}$, satisfying the condition that every point in $\\\\mathbb{R}$ is covered by at least one circle $c_i$ and each point in $\\\\mathbb{B}$ is not covered by any circle $c_i, i = 1, 2, \\\\ldots k$. We conjecture that to find such a set with the smallest $k$ is NP-complete. In this paper, we present an approximation algorithm for computing the set with minimal number of such circles. The algorithm finds also a lower bound of the smallest $k$.\",\"PeriodicalId\":152151,\"journal\":{\"name\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2011.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定平面上的两个点$\mathbb{R}$和$\mathbb{B}$,我们解决了求一组圆$\mathbb{C} = \{c_i, i= 1,2, \ldots, k\}$的问题,满足$\mathbb{R}$中的每个点至少被一个圆$c_i$覆盖,并且$\mathbb{B}$中的每个点不被任何圆$c_i, i= 1,2, \ldots, k$覆盖的条件。我们推测找到这样一个具有最小$k$的集合是np完全的。在本文中,我们给出了一种计算此类圆的最小数目集合的近似算法。该算法还找到了最小$k$的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimizing the Number of Separating Circles for Two Sets of Points in the Plane
Given two sets of points $\mathbb{R}$ and $\mathbb{B}$ in the plane, we address the problem of finding a set of circles $\mathbb{C} = \{c_i, i= 1, 2, \ldots, k\}$, satisfying the condition that every point in $\mathbb{R}$ is covered by at least one circle $c_i$ and each point in $\mathbb{B}$ is not covered by any circle $c_i, i = 1, 2, \ldots k$. We conjecture that to find such a set with the smallest $k$ is NP-complete. In this paper, we present an approximation algorithm for computing the set with minimal number of such circles. The algorithm finds also a lower bound of the smallest $k$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信